Задающий генератор для трехфазного инвертора

Самодельный частотник. Разрабатываем преобразователь вместе

Задающий генератор для трехфазного инвертора

Зачем нужно делать самому преобразователь для 3-фазного электромотора, и как смастерить его своими руками? Чтобы защитить окружающую природу повсюду создаются правила, которые рекомендуют изготовителям электрических устройств делать продукцию, которая будет экономить электрическую энергию. Часто это бывает достигнуто правильным управлением частотой вращения электромотора. Преобразователь частоты легко решает эту задачу.

Частотник электромотора с тремя фазами по-разному называют: инвертор, частотный изменитель тока, приводной механизм, регулируемый частотой. Сегодня такие устройства делают разные заводы, но многие умельцы своими руками изготавливают не хуже.

Как я сам изготовил частотный преобразователь

Я изготовил преобразователь частоты и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:

Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A.

У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки.

Для управления установил две кнопки и выключатель для обратного вращения.

Силовую часть я собрал на навесном монтаже.

Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:

Вид этой моей платы с другой стороны:

Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:

Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:

Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.

При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски.

Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала.

Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.

Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.

Как сделать инвертор самому своими руками?

Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.

Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.

За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением).

Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для  управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.

Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой.

Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью.

Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера.

Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела векторные частотники, преобразившие промышленность до неузнаваемости.

Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.

Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.

Для чего предназначен инвертор — его принцип действия

Инвертор действует на частоту вращения асинхронных моторов. Моторы переделывают электроэнергию в механическое движение. Вращательное движение преобразуется в движения механические. Это создает большое удобство. Асинхронные моторы очень популярны во многих сторонах жизни людей.

Обороты электродвигателя можно изменять и другими устройствами. Но, у них много недостатков. Они сложны в пользовании, дорого стоят, работают с плохим качеством, разбег регулировки маленький.

Частотный преобразователь для мотора с тремя фазами легко решает эту проблему. Все знают, что пользование частотниками для изменения частоты вращения есть самый хороший и правильный метод. Такой аппарат дает мягкий пуск и торможение, а также контролирует многие процессы, происходящие в моторе. Аварийные ситуации при этом сводятся на нет.

Чтобы плавно и быстро регулировать работу двигателя, специалисты разработали специальную электрическую схему. Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Коэффициент полезного действия его достигает 98%. Это происходит за счет повышения частоты коммутации. Механические устройства не могут выполнить такие функции.

Как регулировать скорость инвертором?

Как частотник может изменять частоту вращения трехфазного электромотора? Сначала он меняет напряжение сетевое. Далее, из него получается нужная амплитуда и частота напряжения, поступает на электромотор.

Разбег интервала регулирования скорости преобразователем большой. Можно изменять вращение мотора в другую сторону. Чтобы двигатель не вышел из строя, нужно брать во внимание данные из его характеристики, допускаемые обороты, мощность.

Из чего состоит привод регулирования?

Схема частотника.

Он имеет в составе три звена:

  1. выпрямитель, дающий потенциал постоянного тока при включении к питанию электрической сети. Сеть может быть управляемой или нет;
  2. фильтрующий элемент, который сглаживает выходное напряжение (применяется емкость);
  3. инвертор, который производит нужную частоту потенциала, крайнего звена возле электромотора.

Режим управления частотников

Их делят на виды управления оборотами двигателя:

  1. скалярное управление (нет связи с обратной стороны);
  2. режим векторного управления (связь с обратной стороны имеется, или отсутствует).

В первом случае управляется статор с его магнитным полем. Управление вектором учитывает действие полей магнита ротора и статора, улучшается крутящий момент при разных скоростях вращения. Это и есть основное различие их режимов управления.

Способ векторов точнее и эффективнее. Обслуживать его дороже. Он больше подходит для специалистов с хорошими профессиональными умениями и знаниями. Метод управления скалярного типа наиболее прост в работе. Применяется он с выходными параметрами, не требующими регулировки особой точности.

Как подключить инвертор треугольником и звездой?

Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.

Подключить частотник к мотору можно звездой или треугольником.

Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.

Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.

Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.

При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.

Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.

Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.

Применение инверторов нового поколения

Современные частотные преобразователи делаются с применением таких устройств как микроконтроллеры. Это значительно повышает функции инверторов в алгоритмах управления и контролирования с точки зрения безопасности работ.

Частотники имеют успешное применение в областях производства:

  • в водоснабжении, снабжении теплом при изменении скорости подачи помпы холодного и горячего водоснабжения;
  • в заводских условиях машиностроения;
  • в легкой и текстильной промышленности;
  • в энергетике и производстве топлива;
  • для насосов канализации и скважин;
  • в технологических процессах для автоматики управления.

Чтобы управлять и контролировать частотники изготовитель прибора предлагает созданную программу, которая будет всегда иметь связь с контроллером посредством порта, будет показывать на мониторе состояние и позволит производить управление. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.

Данные обмениваются в три этапа:

  1. Идентификация.
  2. Инициализация.
  3. Управление и контроль.

Стоимость блоков питания бесперебойного напряжения имеет зависимость от того, есть ли в нем частотный преобразователь. За такими устройствами будущее. Отрасли экономики и энергетики будут быстрее развиваться благодаря новым современным устройствам.

Автономный 3-фазный инвертор напряжения

Задающий генератор для трехфазного инвертора

В статье описывается инвертор напряжения для питания трехфазного электродвигателя. Инвертор осуществляет ручное скалярное управление работой электродвигателя.

В современном частотно-регулируемом электроприводе можно выделить три основные составляющие:

1. Преобразователь электроэнергии (выпрямитель-инвертор).

2.

Система управления.

3. Асинхронный электродвигатель.

Преимущественно в частотно-регулируемых приводах применяется простая схема, состоящая из неуправляемого выпрямителя и независимого инвертора напряжения.

В регулируемых электроприводах переменного тока используются три основные структуры системы автоматического регулирования:

1. Реализация заданной статической зависимости между частотой и действующим значением напряжения U, питающего электродвигатель (скалярное управление электроприводом).

2.

Алгоритм векторного управления.

3. Алгоритм прямого управления моментом.

При скалярном управлении контур управления разомкнут. Частота вращения электродвигателя в этом случае определяется моментом нагрузки и выходной частотой преобразователя f. Выходное напряжение преобразователя зависит от частоты и определяется соотношением K=U/f. Для каждого конкретного случая эта зависимость может иметь различный угол наклона U/f.

Система автоматической регулировки должна измерять фазные токи IА, IВ и вычислять активное значение тока, пропорциональное моменту. Область применения такого преобразователя с системой скалярного типа: насосы, вентиляторы, центрифуги, конвейеры.

Система автоматического регулирования с векторным управлением используется для регулирования частоты вращения или момента электродвигателя. Типичное применение: краны, подъемники, лебедки.

Такое управление требует измерения тока статора IА, IВ и числа оборотов ротора двигателя. Полученные сигналы вводятся в математическую модель асинхронного электродвигателя.

Система автоматического регулирования прямого управления моментом основана на реализации во времени работы двух моделей:

1. Регулирование в скользящем режиме вектора потокосцепления статора и момента М электродвигателя по значениям, их заданных и действительных величин. Такое регулирование осуществляется модулем сверхбыстрых процессоров.

2.

Модель асинхронного электродвигателя через каждый промежуток времени осуществляет вычисление действительных значений потока статора и момента по вводимой в нее (модель) информации: токам фаз статора, напряжению звена постоянного тока и положению ключей инвертора.

Кроме того, производится вычисление скорости асинхронного двигателя и частоты выходного тока инвертора. Этот метод прямого управления моментом привлекателен тем, что отсутствует широтно-импульсная модуляция и не используется датчик вращения электродвигателя.

Из сказанного следует, что реализовать два последних метода САР часто затруднительно.

В большинстве преобразователей частоты для формирования синусоидального тока в статорной обмотке асинхронного двигателя используется ШИМ (широтно-импульсная модуляция).

Наряду с массой преимуществ такой способ получения синусоидального тока не свободен от существенных недостатков, главный из которых заключается в том, что для получения малых гармонических составляющих тока необходимо значительно увеличить частоту переключений ключей инвертора (до 20…25 кГц). Это вызывает рост динамических потерь в ключах инвертора, а также усложнение и без того тяжелых энергетических условий, в которых работают силовые элементы схемы. Кроме того, принцип ШИМ не позволяет полностью использовать напряжение источника питания, особенно в случаях, когда необходимо реализовать повышенный момент на валу асинхронного двигателя.

Работа инвертора

На рис.1 показана принципиальная схема автономного инвертора напряжения для питания трехфазного асинхронного двигателя.

Это устройство реализует ручное скалярное управление электродвигателем, поскольку нет обратной связи (не контролируется величина тока в обмотках статора).

Реализация заданной статической зависимости между частотой f и действующим значением напряжения U, питающего электродвигатель, осуществляется вручную.

Задающий генератор выполнен на основе 3 инверторов DD1.1–DD1.3. Скважность его импульсов близка к 50%, и генератор работает на частоте, определяемой выражением F~1/[0,5(R2+R3)C1]. Такой генератор мало чувствителен к изменениям величины напряжения питания. Регулирование частоты генератора (а, следовательно, и выходной частоты преобразователя) осуществляется резистором R3.

Широтно-импульсный модулятор построен на микросхеме DD7 и инверторе DD11.2. Микросхема DD7 (западный аналог этой микросхемы CD4007) содержит два инвертора и два полевых (р-канальный и n-канальный) транзистора. Сопротивление каналов этих транзисторов почти линейно зависит от входного напряжения. Полевые транзисторы включены через диоды VD1 и VD2 параллельно резистору R9.

При высоком уровне напряжения на выходе генератора диод VD2 будет проводить, т.е. выходное сопротивление р-канала транзистора DD7.3 будет включено параллельно с резистором R9. Подобным же образом выходное сопротивление n-канального транзистора включается параллельно резистору R9 при низком уровне на выходе генератора.

Широтно-импульсный модулятор реализуется изменением скважности импульсов генератора в соответствии с входным напряжением, поступающим с двухзвенной интегрирующей цепочки R6C4, R7C5.

Само изменение частоты колебаний минимально зависит от их скважности, так как выходное сопротивление одного транзистора возрастает, а другого всегда уменьшается при любой величине управляющего напряжения.

Таким образом, среднее за период значение шунтирующего резистор R9 сопротивления остается постоянным. Частота колебаний генератора соответствует 10 кГц. Увеличение управляющего напряжения, поступающего на модулятор, приводит к увеличению длительности выходных импульсов.

Уменьшение управляющего напряжения, соответственно, приводит к уменьшению длительности импульсов выходного сигнала. При этом частота колебаний остается неизменной.

Выходной сигнал задающего генератора (DD1.1–DD1.3) подается на вход 13 DD5.1 (с выв. 3 DD1.2), а также на тактовый вход 14 DD2 (с выв. 11 DD1.1).

На микросхеме DD2 выполнен десятичный счетчик-делитель частоты с дешифратором. Если на входе «разрешение» 13 ИМС DD2 присутствует низкий уровень, счетчик считает импульсы по положительному перепаду на тактовом входе 14. При высоком уровне на входе 13 ИМС DD2 действие тактового входа запрещается, и счет останавливается.

Высокий уровень на входе сброса R (выв. 15) DD2 счетчика устанавливает его в «нулевое» состояние. На каждом выходе счетчика-дешифратора DD2 высокий уровень последовательно появляется только на длительность периода тактового импульса.

https://www.youtube.com/watch?v=w6l0Jvl0Yto

Выходные импульсы с выходов микросхемы DD2 формируются в трехфазную импульсную последовательность с помощью микросхемы DD3. Микросхема DD4 осуществляет инверсию трехфазной импульсной последовательности.

С помощью D-триггеров микросхемы DD8 получают трехфазную импульсную последовательность, задержанную относительно исходной.

Из прямых и инверсных выходных сигналов микросхем DD3.1–DD3.3, DD4.1–DD4.3 и триггеров DD8 логические элементы DD9.1, DD9.2, DD10.1, DD10.2, DD11.1, DD11.3 формируются импульсы управления «верхними» и «нижними» силовыми ключами.

Преобразователь реализован по схеме полного трехфазного моста, выполненного на шести транзисторах VT1–VT6. Синусоидальный выходной сигнал формируется методом широтно-импульсной модуляции. Управляется мост тремя высокочастотными драйверами типа IR2110 (ИМС DA1–DA3), способными перезаряжать затворы полевых транзисторов током до 2 А.

Входное напряжение для этих драйверов должно находиться в пределах 10…15 В. При снижении напряжения ниже 10 В драйвер отказывается работать, так как он имеет встроенную схему контроля питающего напряжения. Повышение напряжения выше 15 В приводит к выходу из строя драйверов или затворов полевых транзисторов.

Максимальное напряжение между затвором и истоком VT1–VT6 составляет 20 В. Драйверы DA1–DA3 имеют вход SD, при подаче на который сигнала высокого уровня они запираются, и преобразователь не работает. Это можно использовать для защиты преобразователя от перегрузки. Выходной сигнал с задающего генератора поступает на делитель частоты на 3 (DD5.1, DD6.1, DD6.

2), а также на логический элемент «Исключающее ИЛИ», выполненный на микросхеме DD5.3.

Логический элемент DD5.2 в сочетании с резистором R4 и конденсатором C2 создает пусковой импульс, устанавливающий оба триггера ИМС DD6 в исходное состояние. Выходной сигнал делителя частоты на 3 (сдвинут на 180° относительно входного), проходит через две последовательно соединенные интегрирующие цепочки R6C4, R7C5 и представляет собой по форме приблизительно синусоиду с периодом в 10 мс.

Выходной сигнал логического элемента DD5.3 – прямоугольный импульс длительностью 0,5 мс и периодом в 1,7 мс. Длительность импульса можно регулировать, изменяя величину резистора R5. От длительности импульса зависит величина зазора между включением силовых ключей. Это необходимо для того, чтобы силовые ключи не оказались одновременно открытыми, что опасно протеканием через них сквозных токов.

Диоды VD7–VD10 устанавливаются в том случае, когда используемые в инверторе силовые транзисторы не имеют внутреннего диода. Мощность преобразователя зависит от типа примененных полевых транзисторов. Полевые транзисторы, а также транзисторы IGBT можно устанавливать параллельно для увеличения мощности преобразователя.

На рис.2 показаны временные диаграммы сигналов в определенных точках инвертора, а именно:

1 – тактовая частота задающего генератора;

2 – выходной сигнал логического элемента DD5.3;

3 – вывод12 D-триггера DD6.2;

4 – импульсная последовательность на выводе 9 логического элемента DD3.1;

6 – импульсная последовательность на выводе 6 логического элемента DD3.2;

8 – импульсная последовательность на выводе 10 логического элемента DD3.3. (т.е. образуется прямая трехфазная импульсная последовательность);

5, 7, 9 – инверсная трехфазная импульсная последовательность, на выводах логических элементов DD4.1–DD4.3;

10, 12, 14 – задержанная (на длительность импульса логического элемента DD5.3) прямая трехфазная импульсная последовательность;

11, 13, 15 – задержанная инверсная трехфазная импульсная последовательность;

16, 18, 20 – входные сигналы верхних ключей драйверов DA1–DA3;

17, 19, 21 – входные сигналы нижних ключей драйверов DA1–DA3;

Сигналы 6–21 показаны без высокочастотного заполнения.

Как правило, в преобразователях частоты для получения широтно-импульсной модуляции используются микропроцессоры. Мне хотелось решить эту задачу аппаратным способом. Проблема заключается в том, что широтно-импульсную модуляцию необходимо менять на каждом полупериоде синусоидального напряжения.

Силовая часть инвертора особенностей не имеет, но желательно использовать устройство для «плавного» пуска [1].

Литература

1. Калашник В. Устройство для «плавного» пуска нагрузки в электросети // Электрик. – 2011. – №4. – С.82–83.

Трехфазный инвертор

Задающий генератор для трехфазного инвертора

Инверторные устройства используются в самых различных областях. В большинстве случаев, это однофазные приборы, работающие по классическим схемам.

Однако, возникают ситуации, когда необходимо обеспечить электроэнергией асинхронный двигатель от аккумуляторной батареи или просто получить трехфазный ток для специфических нужд.

И здесь на выручку приходит трехфазный инвертор с увеличенным числом электронных управляемых ключей, преобразующий постоянный ток в трехфазный переменный с требуемыми характеристиками.

Где применяется

Область применения трехфазных инверторов достаточно большая, а в некоторых случаях без них просто невозможно обойтись.

Управление электродвигателями будет гораздо эффективнее, когда используются модифицированные современные трехфазные инверторные устройства.

Они включаются в общую схему с одно- и трехфазными асинхронными двигателями, коллекторными агрегатами, а также с трехфазными двигателями постоянного тока.

Для управления разными типами двигателей используются свои режимы, поддерживаемые соответствующим программным обеспечением. Это дает возможность подключать практически любые двигатели в обмотках которых имеется от 1 до 3 фаз. В виде исключения можно отметить конструкцию биполярных двухфазных шаговых двигателей, оборудованных двумя независимыми обмотками.

В состав комплектующих такого инвертора входит основная плата управления, входы и выходы питания, а также интерфейс для ввода необходимых данных и вывода текущих показаний на дисплей или табло. Довольно часто управления осуществляется с помощью компьютера. Подключение инвертора выполняется через специальный разъем, установленный на плате.

В современных инверторах управления предусмотрен демонстрационный режим, при котором поочередно запускается показ основных функций – пуска и остановки, изменения скорости и реверса. Для переключений между функциями предусмотрены 4 кнопки, расположенные на плате.

Разновидности трехфазных инверторов

По своим параметрам, характеристикам и предназначению все виды преобразователей можно условно разделить на несколько групп.

В первую очередь, они могут быть автономными или зависимыми. В первом случае постоянный ток преобразуется в переменный, где частоту определяет система управления, а характеристики выходного напряжения тесно связаны с параметрами нагрузки.

Зависимые устройства выдают ток, определяемый частотой местной сети, с постоянными значениями. В автономных приборах возможны плавные изменения напряжения от нуля до наибольшей допустимой величины.

Поэтому такие инверторы чаще всего используются в различных схемах.

Существует дополнительная классификация автономных инверторов в соответствии с его схемой, способами принудительной коммутации, параметрами нагрузки и источников питания. Они могут быть автономными инверторами тока – АИТ или напряжения – АИН, а также резонансными – АИР.

В соответствии с количеством токовых коммутаций, трехфазный инвертор бывает одно- или двухступенчатым.

В первом случае ток нагрузки сразу поступает к тиристору, включающемуся в работу, а во втором происходит изначальное переключение нагрузки на вспомогательную цепь, и лишь потом она переходит в основную.

Если в схеме используются тиристоры, рассчитанные только на одну операцию, в нее могут быть дополнительно включены узлы принудительной коммутации.

Как работает 3-х фазный инвертор

В состав силовой части трехфазного инвертора входят транзисторные ключи с маркировкой от VT1 до VT6 в количестве шести элементов и диоды обратного тока VD1–VD6, также шесть штук. Диоды соединяются в общий мост и подключаются параллельно с источником питания.

Силовая трёхфазная цепь инверторов может быть построена разными способами. При постоянной структуре цепи, подача управляющих сигналов происходит одновременно сразу к трем силовым транзисторам. Таким образом, ее структура остается неизменной. В случае использования переменной структуры, количество транзисторов для подачи управляющих сигналов нередко бывает менее трех.

Продолжительность переключений, выполняемых транзисторными ключами и частота напряжения на выходе, зависит от используемой системы управления. В интервале, включающем в себя один период, переключения на выходе транзисторов анодной и катодной групп может происходить от одного до множества раз.

Конфигурация тока на выходе получается в соответствии с характеристиками нагрузки. Если нагрузка активно-индуктивная, получается форма в виде ломаной кривой, разделенной на четыре части, расположенные на половине периода.

Эффект от токовой нагрузки определяется интегрированием наиболее характерных участков токовой кривой.

Необходимая форма нагрузки, в том числе и синусоидальная, получается при многократном включении и отключении управляемых вентилей в пределах одного периода.

Регулировка выходного напряжения в инверторе осуществляется при помощи широтно-импульсной модуляции – ШИМ. Сформированная модуляция в виде прямоугольника, получила название широтно-импульсного регулирования – ШИР.

Такое регулирование выходного напряжения выполняется за счет изменяющейся продолжительности подключения нагрузки к источнику питания.

Данная схема применяется в момент паузы между импульсами, когда происходит запирание двух одинаковых силовых транзисторов.

В случае групповых переключений в нагрузочном напряжении возникает определенная пауза. Это происходит при изменении током своего знака в тот момент, когда два транзистора начинают запираться.

Если же ток к этому времени не изменит своего знака или нагрузка окажется слишком продолжительной, то формирования паузы в напряжении на выходе не получится. При использовании ШИР, структура тока и напряжения на выходе в диапазоне малых частот и напряжений, значительно ухудшается.

Для того чтобы избежать этого негативного явления, ШИР приходится выполнять на действующих несущих частотах.

Схема подключения

Подключение трехфазного инвертора в качестве примера можно рассмотреть в общей связке с электродвигателем. На представленном ниже рисунке обозначен двигатель М, работающий под управлением ключей V1 – V6.

Все полупроводники для более наглядного отображения представлены как обычные механические контакты. Для питания используется постоянное напряжение Ud, поступающее из выпрямителя, не отмеченного на схеме.

Ключи 1, 3, 5 относятся к верхним, а три ключа 2, 4, 6 – к нижним.

Верхние и нижние ключи никогда не открываются одновременно, во избежание короткого замыкания. Схема будет нормально работать, когда нижний ключ открывается, а верхний к этому времени уже находится в закрытом состоянии. Для формирования этой паузы используются контроллеры.

Продолжительность паузы должна гарантировать, чтобы силовые транзисторы закрывались своевременно.

При недостаточности этого временного промежутка, верхний и нижний ключи могут одновременно открыться на очень короткое время.

Это крайне нежелательно и не должно происходить систематически, поскольку выходные транзисторы сильно нагреваются и быстро выйдут из строя. Подобная ситуация известна как сквозные токи.

Существует гальваническая связь между нижними и верхними ключами и с управляющим устройством. Подача сигнала управления выполняется через резисторы непосредственно к составному транзистору, выполняющему функции драйвера нижнего ключа.

У верхних ключей отсутствует гальваническая связь с элементом управления и с общим проводником. Поэтому для более эффективного управления к верхнему составному транзистору помимо драйвера дополнительно устанавливается оптрон.

Питание верхних ключей производится от отдельных выпрямителей, каждый из которых подключен к собственной обмотке трансформатора.

Различия между одно- и трехфазными инверторами

Существуют принципиальные отличия однофазного от трехфазного инвертора. В основном они связаны с их конструктивными особенностями. Это наглядно видно на примере устройств, используемых с солнечными батареями. Схема однофазного инвертора использует 1 или 2 трекера МРРТ, выполняющих слежение за максимальной отметкой мощности панели.

Далее в цепь включается инвертор, выполняющий преобразование тока и синхронизирующий его с сетью. Электроэнергия, полученная от этого инвертора, поступает непосредственно в сеть. К каждому трекеру подключается своя солнечная панель. При наличии двух трекеров можно подключить на выбор 1 или сразу 2.

Трехфазный инвертор напряжения может иметь в своей схеме от 1 до 4 трекеров, в зависимости от мощности каждого преобразователя. Они также выполняют слежение за точкой максимальной мощности и направляют постоянный ток от солнечной панели к входу инвертора. В свою очередь, преобразователь соединяется с сетевыми фазами и синхронизирует их сдвиг на все 3 фазы.

Таким образом, основное отличие между обоими устройствами заключается в разнице распределения полученной энергии. Распределение электричества трехфазным прибором осуществляется равномерно между всеми фазами. Если же для этой цели используется три однофазных инвертора, то выходная мощность каждого из них будет колебаться в соответствии с мощностью, выдаваемой солнечной панелью.

Довольно часто возникает вопрос, что выгоднее использовать, одно- или трехфазный инвертор? Решение принимается индивидуально, исходя из конкретных условий эксплуатации.

Несмотря на 1 корпус вместо 3-х, он может оказаться слишком дорогим, поэтому сравнение нужно делать по тем или иным известным моделям.

То же самое касается VHHN-трекеров, количества силовых ключей и других важных компонентов.

Задающий генератор для трехфазного инвертора

Задающий генератор для трехфазного инвертора

> Генераторы > Какой генератор потянет инверторный сварочный аппарат

Сварочные аппараты используются во многих сферах жизнедеятельности человека. Они помогают решать проблемы в бытовых условиях загородного дома, на мелких производственных предприятиях, в автомастерских, на крупных промышленных объектах.

Особенно сварка востребована на строительных площадках, где еще недавно использовали тяжелые трансформаторные сварочные аппараты. Они имеют большие габариты, такой агрегат приходится перевозить на автомобильном транспорте.

Трансформаторную сварку проблематично перемещать по территории строительной площадки.

Процесс выполнения сварочных работ

Строение аппарата

Конструкция инверторного сварочного аппарата намного легче и компактнее.

Строение крупногабаритного сварочного трансформатора

Назначение элементов трансформаторного аппарата для сварки:

  • Замкнутый магнитопровод – это сердечник, сложенный из листовой стали, листы перед сборкой покрывают лаком.
  • Рукояткой вращают вертикальный винт с ленточной резьбой.
  • Рым-болт фиксирует установленное положение рукоятки.
  • Крышка предохраняет от попадания дождя, снега, случайных предметов в конструкцию трансформатора.
  • Вертикальный винт с ленточной резьбой при вращении ручки регулирует величину магнитного потока через сердечник магнитопровода.
  • Ходовая гайка является нижней основой, через которую прокручивается вертикальный винт.
  • Первичная обмотка предназначена для подачи на нее напряжения от источника питания 220В или 380В.
  • Вторичная обмотка при подключении к нагрузке (электрода к месту сварки) обеспечивает прохождение тока с первичной обмотки, через магнитопровод на вторичную, потом в нагрузку. Система работает как понижающий трансформатор с 380/220В на входе и 60В на выходе, ток при этом достигает до 500А.
  • В корпусе трансформатора проделаны жалюзи для воздушного охлаждения обмоток и стержня.
  • Для подключения сварочных проводов предусмотрены специальные зажимы.
  • Ручка на корпусе упрощает перемещение тяжелого трансформатора на колесах.

Инверторный аппарат  состоит из трех основных малогабаритных элементов:

  • маломощный, понижающий напряжение, трансформатор;
  • плата электронной схемы, преобразующая и стабилизирующая выходной сварочный ток;
  • панель управления с элементами контроля и регулировки силы тока.

Устройство инверторного сварочного аппарата

На внешней стороне корпуса и панели управления расположены:

  • индикаторный светодиод, при достижении температуры 90̊ С на радиаторах с транзисторами и инверторными диодами, он начинает светиться, предупреждая о перегреве аппарата;
  • индикаторный диод подключения к сети указывает на наличие входного напряжения;
  • снизу панели управления установлены клеммы для подключения сварочных проводов;
  • ручка регулировки тока позволяет плавно изменять сварочный ток в пределах от 10А до 180А;
  • для транспортировки аппарата предусмотрен наплечный ремень, его длина регулируется;
  • в металлическом корпусе для воздушного охлаждения электронной схемы сделаны жалюзи.

С развитием современных сварочных технологий инверторные аппараты постепенно заменяют трансформаторные. Эту тему хорошо раскрывает форум в интернете, там рассматриваются, достоинства и недостатки инверторных аппаратов. Они лучше трансформаторной сварки, имеют малый вес и габариты, более функциональны, просты в эксплуатации, легко переносятся вручную.

Пример транспортировки инверторного аппарата

Принцип работы инвертора

Какой сварочный инверторный аппарат лучше

Поступающий на вход переменный ток (220 В частотой 50 Гц), на входном выпрямителе преобразуется в постоянный. Фильтры, состоящие из набора электролитических конденсаторов, дополнительно сглаживают его колебания, делая ток лучше, стабильнее.

Далее полупроводниковый модулятор снова преобразует напряжение постоянного тока в переменное, с частотой более высоких колебаний до 100 кГц. Вторичный выпрямитель делает его снова постоянным, понижающий трансформатор снижает напряжение до уровня 70 В. Сварочный ток при этом может регулироваться платой управления от 10 до 160А, этого вполне достаточно для сварки металлов.

Электронная плата инверторного сварочного аппарата

Проблемой в работе сварочных аппаратов инверторного типа являются нестабильные источники питания. Вопросы возникающих неисправностей, и то, как их устранять хорошо раскрывает форум интернета, где специалисты дают практические советы дилетантам и делятся опытом между собой.

Полупроводниковые приборы, транзисторы модулятора и инверторные диоды выпрямителей в процессе работы сильно нагреваются. Для снижения температуры их устанавливают на дюралевые радиаторы. При высоких температурах и скачках питающего напряжения эти элементы могут выйти из строя.

Выбор источника питания

Какой выбрать автономный источник питания для сварочного инверторного аппарата? Запитывая инверторный сварочный аппарат от промышленной сети, особо беспокоиться о стабильности мощности источника питания незачем.

Но в полевых условиях, на строительных площадках не всегда можно подключиться к электросетям. Для этого надо выбрать автономные источники питания.

Самый распространенный и востребованный вид – это малогабаритный бензиновый генератор.

Но при этом возникает целый ряд вопросов:

  • какую мощность потребляет сварочный инвертор?;
  • бензогенератор потянет этот аппарат или нет?;
  • какой должна быть вырабатываемая мощность генератора, чтобы сварочный аппарат надежно работал?

Тему, в каких случаях, к какому генератору подключиться, широко раскрывает форум специалистов в сети интернет. Там рассказывается, какое сварочное оборудование лучше использовать на строительных площадках.

Использование инвертора с бензогенератором

Расчет мощности

В первую очередь надо ознакомиться с параметрами сварочного аппарата, они есть в паспорте на изделие, можно распечатать из интернета. К примеру, сварочный аппарат выдает ток по максимуму 160А, надо рассчитать, какую максимальную мощность может потреблять сварочный аппарат. Используется формула:

Р св = Is х Ud КПД, где

  • Р св – максимальные мощности потребляемые сварочными аппаратами;
  • Is – максимальный ток сварочного аппарата 160А;
  • Ud – дуговое напряжение в процессе сварки 25В;
  • КПД – коэффициент полезного действия инверторного аппарата, вероятней всего это будет 0.85.

Р св = (160 х 25) 0,85 = 4,7кВт или 4700 Вт.

В процессе сварки никогда не используется постоянно режим максимальной мощности. Сварщики работают в пределах регулировки от среднего до максимального тока, в зависимости от того, с каким материалом имеют дело.

Нужен расчет средней мощности потребления сварочным аппаратом за период сварочных работ. В паспорте указывается такой параметр как ПВ, это временная поправка в процентах на использование максимальной мощности в процессе работы. Обычно ПВ – 40%, чтобы рассчитать среднюю мощность надо максимальную умножить на ПВ100, получится 4700 х 0.4 = 1,88 кВт.

В некоторых паспортах на инверторные аппараты и генераторы мощность обозначают не в кВт (киловаттах), а в кВА (киловольт-ампер). Эту разницу надо обязательно учитывать. Обе единицы измеряют потребляемую мощность, кВт – показывает потребление активной мощности, кВА – полной.

В идеальном случае при использовании в качестве нагрузки нагревательных приборов вся мощность является активной, сила тока преобразуется в тепло кВА=кВт.

Но при другой нагрузке, с инверторными аппаратами, электромоторами и другими потребителями только часть мощности будет активной, которая пойдет на раскрутку ротора электродвигателя или разогрев электрода сварочного аппарата.

Появляется реактивная составляющая, которая расходуется на нагрев провода, полупроводниковых элементов электрических схем. В результате полная затраченная мощность будет больше активной.

Для оценки отношения активной и реактивной мощности с учетом появления линейных и нелинейных помех в сети с различными нагрузками ввели коэффициент мощности (КМ) соs-ϕ.

Его оптимальное значение 1, когда нагрузка нагревательный тэн, для инверторных аппаратов КМ указывается в паспортах примерно 0,8.

Для перевода кВА в кВт надо кВА умножить на соs-ϕ (КМ), чтобы кВт перевести в кВА, нужно кВтсоs-ϕ (КМ). В рассматриваемом случае:

  • 4700 кВт 0.8 = 5875 кВА;
  • 5875 кВА х 0,8 = 4700 кВт.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.