Характер нагрузки потребителя электрической энергии виды

Характер нагрузки потребителя электрической энергии виды – Все об электричестве

Характер нагрузки потребителя электрической энергии виды

Электрическая нагрузка отдельных потребителей, а следовательно, и суммарная их нагрузка, определяющая режим работы электростанций в энергосистеме, непрерывно меняется. Принято отражать этот факт графиком нагрузки, т.е. диаграммой изменения мощности (тока) электроустановки во времени.

По виду фиксируемого параметра различают графики активной Р, реактивной Q, полной (кажущейся) S мощностей и тока I электроустановки.

Как правило, графики отражают изменение нагрузки за определенный период времени. По этому признаку их подразделяют на суточные (24 ч), сезонные, годовые и т.п.

По месту изучения или элементу энергосистемы, к которому они относятся, графики можно разделить на следующие группы:

  • графики нагрузки потребителей, определяемые на шинах подстанций;
  • сетевые графики нагрузки — на шинах районных и узловых подстанций;
  • графики нагрузки энергосистемы, характеризующие результирующую нагрузку энергосистемы;
  • графики нагрузки электростанций.

Графики нагрузки используют для анализа работы электроустановок, для проектирования системы электроснабжения, для составления прогнозов электропотребления, планирования ремонтов оборудования, а также в процессе эксплуатации для ведения нормального режима работы.

Суточные графики нагрузки потребителей

Фактический график нагрузки может быть получен с помощью регистрирующих приборов, которые фиксируют изменения соответствующего параметра во времени.

Перспективный график нагрузки потребителей определяется в процессе проектирования. Для его построения надо располагать прежде всего сведениями об установленной мощности электроприемников, под которой понимают их суммарную номинальную мощность. Для активной нагрузки

(1)

Присоединенная мощность на шинах подстанции потребителей

(2)

Где — соответственно средние КПД электроустановок потребителей и местной сети при номинальной нагрузке.

В практике эксплуатации обычно действительная нагрузка потребителей меньше суммарной установленной мощности. Это обстоятельство учитывается коэффициентами одновременности kо и загрузки kз. Тогда выражение для максимальной нагрузки потребителя будет иметь вид:

(3)

где kспр — коэффициент спроса для рассматриваемой группы потребителей.

Коэффициенты спроса определяются на основании опыта эксплуатации однотипных потребителей и приводятся в справочной литературе. Средние значения коэффициентов спроса для некоторых промышленных потребителей приведены в табл.1.

Таблица 1

Коэффициент спроса kспр

Найденное по (3) значение максимальной нагрузки является наибольшим в году и соответствует обычно периоду зимнего максимума нагрузки.

Кроме Рmax, для построения графика необходимо знать характер изменения нагрузки потребителя во времени, который при проектировании обычно определяется по типовым графикам.

Типовой график нагрузки строится по результатам исследования аналогичных действующих потребителей и приводится в справочной литературе в виде, показанном на рис.1,а.

Рис.1. Суточные графики активной нагрузки потребителя а — типовой

б — в именованных единицах

Для удобства расчетов график выполняется ступенчатым. Наибольшая возможная за сутки нагрузка принимается за 100%, а остальные ступени графика показывают относительное значение нагрузки для данного времени суток.

При известном Рmax можно перевести типовой график в график нагрузки данного потребителя, используя соотношение для каждой ступени графика:

(4)

где n% — ордината соответствующей ступени типового графика, %.

На рис.1,б показан график потребителя электроэнергии, полученный из типового (рис.1,а) при Рmax = 20 МВт.

Обычно для каждого потребителя дается несколько суточных графиков, которые характеризуют его работу в разное время года и в разные дни недели.

Это — типовые графики зимних и летних суток для рабочих дней, график выходного дня и т.д. Основным является обычно зимний суточный график рабочего дня.

Его максимальная нагрузка Рmax принимается за 100%, и ординаты всех остальных графиков задаются в процентах именно этого значения (рис.2).

Рис.2. Пример типового графика конкретного вида производства (черная металлургия) 1 — график рабочего дня

2 — график выходного дня

Кроме графиков активной нагрузки, используют графики реактивной нагрузки. Типовые графики реактивного потребления также имеют ординаты ступеней, %, абсолютного максимума:

(5)

где tgφmax определяется по значению cosφmax , которое должно быть задано как исходный параметр для данного потребителя.

Суточный график полной мощности можно получить, используя известные графики активной и реактивной нагрузок. Значения мощности по ступеням графика (рис.3) определяются по выражениям

(6)

Рис.3. Суточные графики активной, реактивной и полной мощности потребителя

Суточные графики районных подстанций

Эти графики определяются с учетом потерь активной и реактивной мощностей в линиях и трансформаторах при распределении электроэнергии.

Потери мощности от протекания тока в проводах линий и в обмотках трансформаторов являются переменными величинами, зависящими от нагрузки. Постоянную часть потерь мощности в сети определяют в основном потери холостого хода трансформаторов.

Постоянные потери распределения и переменные потери для максимального режима в i-м элементе сети (линии, трансформаторе) находят с использованием методов, известных из курса «Электрические сети». Суммарные потери для любой ступени графика нагрузки подстанции могут быть найдены из выражений

Показатели качества электроэнергии

Характер нагрузки потребителя электрической энергии виды

Качество электроэнергии, поставляемое в наши дома, не всегда является удовлетворительным. Мы часто говорим: «напряжение просело», «напряжение прыгает», «скачки напряжения», «плохое напряжение». Давайте разберемся вместе с этими понятиями. Следует отметить сразу, что точные определения отклонений от норм качества электроэнергии очень сложные.

В рамках одной статьи невозможно дать полное описание требований к параметрам электричества и способам проведения официальных измерений. Тексты соответствующих ГОСТов и стандартов занимают десятки страниц и содержат многочисленные сложные формулы проведения расчётов.

В данной статье мы дадим лишь общее понимание основных требований к качеству электроэнергии и простые описания часто встречающихся отклонений

Основные показатели качества электроэнергии

Список основных показателей качества электрической энергии:

  • установившееся отклонение напряжения;
  • размах изменения напряжения;
  • доза фликера;
  • коэффициент искажения синусоидальности кривой напряжения;
  • коэффициент n-ой гармонической составляющей напряжения;
  • коэффициент несимметрии напряжений по обратной последовательности;
  • коэффициент несимметрии напряжений по нулевой последовательности;
  • отклонение частоты;
  • длительность провала напряжения;
  • импульсное напряжение;
  • коэффициент временного перенапряжения.

Отклонение напряжения

Одним из параметров качества электроэнергии является отклонение напряжения.

Отклонение напряжения определяется значением установившегося отклонения напряжения. Для значения отклонения напряжения установлены нижеследующие нормы:
нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электроэнергии равны соответственно +5 и +10% от номинального напряжения электрической сети.

Значение отклонения напряжения определяется при длительности процесса более одной минуты. Нормально допустимым отклонением напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231  В). Предельно допустимым отклонением напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Для определенных выше показателей качества электроэнергии действуют следующие нормативы: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.

Колебание напряжения

Одним из параметров качества электроэнергии является колебание напряжения.

Колебания напряжения характеризуются следующими показателями:

  • размахом изменения напряжения;
  • дозой фликера.

Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты. Нормально допустимым колебанием напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231  В). Предельно допустимым колебанием напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Замечание: не следует путать требования ГОСТа к качеству электроэнергии в сети (ГОСТ Р 54149-2010 «Электрическая энергия. Совместимость технических средств электромагнитная») и ГОСТов, описывающих качество электропитания для электрических приборов (напр.

ГОСТ Р 52161.2.17-2009 «Безопасность бытовых и аналогичных электрических приборов»).

ГОСТ качества электроэнергии предъявляет требования по сути к поставщику электрической энергии, и именно на этот ГОСТ можно опереться, если нужно предъявить требования к поставщику при плохом электроснабжении.

А требования к качеству электропитания в паспортах приборов определяют требование к приборам работать нормально в более широком диапазоне значений параметров тока. Для приборов, как правило, закладывается диапазон по напряжению от -15% до +10% от номинального.

Провал напряжения

Одним из параметров качества электроэнергии является провал напряжения. Провал напряжения определяется показателем времени провала напряжения.

Предельно допустимое значение длительности провала напряжения в электросетях напряжением до 20 000 В включительно равно 30 секунд. Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и временем срабатывания автоматики.

Провал напряжения определяется, когда напряжение падает до значения 0,9U и характеризуется длительностью процесса. Предельно допустимая длительность — 30 секунд. Глубина провала иногда может доходить и до 100%.

Перенапряжение

Временное перенапряжение определяется показателем коэффициента временного перенапряжения.

Перенапряжение характеризуется амплитудным значением напряжения больше 342 В. Верхний предел значения напряжения ГОСТом не определяется. Длительность временного перенапряжения — менее 1 секунды

Качество электроэнергии. Виды отклонений параметров электрической энергии

Для определения качества электрической энергии можно использовать следующие графические изображения. На приведенных ниже рисунках отображены следующие отклонения параметров качества электроэнергии: отклонение напряжения, колебание напряжения, перенапряжение, провал напряжения, нарушение синусоидальности напряжения, импульсы напряжения.

Как улучшить качество электроэнергии

В случае существенных отклонений параметров качества электроэнергии следует прежде всего обратиться в обслуживающую организацию, к поставщику электрической энергии.

Если административные действия по улучшению качества электроэнергии не дадут результатов, тогда необходимо использовать специальные средства защиты.

Для улучшения параметров качества электроэнергии мы рекомендуем использовать: средства защиты от скачков напряжения, стабилизаторы напряжения, источники бесперебойного питания.

Характер нагрузки потребителя электрической энергии в заявке

Характер нагрузки потребителя электрической энергии виды

Здравствуйте, в этой статье мы постараемся ответить на вопрос «Характер нагрузки потребителя электрической энергии в заявке». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

График нагрузки, характеризующий изменение мощности, потребляемой за одни сутки, называется суточным графиком.

Подача в отношении одних и тех же энергопринимающих устройств одновременно двух и более заявок в разные сетевые организации не допускается, за исключением случаев технологического присоединения энергопринимающих устройств, в отношении которых применяется категория надежности электроснабжения, предусматривающая использование два и более источников электроснабжения.

Заявка направляется заявителем в сетевую организацию в двух экземплярах письмом с описью вложения. Заявитель вправе представить заявку в сетевую организацию лично или через уполномоченного представителя, а сетевая организация обязана принять такую заявку.

Потребители электроэнергии и их классификация

В случае несоблюдения хотя бы одного из указанных критериев считается, что техническая возможность присоединения отсутствует. Потребителю откажут в подключении или выдадут индивидуальные технические условия (подробнее будет рассмотрено ниже).

При осуществлении технологического присоединения к потребителям предъявляются различные требования в зависимости от мощности их энергопринимающих устройств. Учитывается не только вновь подключаемая, но и ранее присоединенная мощность.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Суточные графики строятся на действующих объектах по показаниям счетчиков активной и реактивной энергии, производимым каждый час.

В п. 5 Заявки указывается запрашиваемая максимальная мощность энергопринимающих устройств Заявителя и технические характеристики присоединяемых энергопринимающих устройств.

Предметом изучения являются электрические нагрузки. Основой рационального решения комплекса вопросов, связанных с проектированием и эксплуатацией электрических сетей всех классов напряжений, является количественная информация об электрических нагрузках.

Расмотрены основные проблемы, которые возникают с низковольтным оборудованием, пути решения данных проблем и полезные советы.

Технологическое присоединение осуществляется на возмездной основе на основании договора, заключаемого между сетевой организацией и юридическим или физическим лицом.

Характеристики основных электроприемников — Мегаобучалка

За счет этой платы компенсируются расходы на строительство и реконструкцию объектов электросетевого хозяйства (линий, подстанций, трансформаторов, компенсирующих устройств) в целях присоединения новых или увеличения мощности энергопринимающих устройств, присоединенных ранее.

С данным явлением борятся и принимают меры, для повышения активной составляющей в нагрузке. Выражается реактивная мощность специальным коэффициентом мощности cos φ.
Документация структурирована на: 1.

Нормативную, куда включены все ГОСты, ОСТы и другие нормативные документы по энергетике, 2. Заводскую, где выложены схемы, руководства, паспорта, инструкции и другие документы заводов- изготовителей; 3.

Научную, где выложены учебники, конспекты лекции, расчеты и другие учебные материалы; 4. Программное обеспечение.

За максимальные длительные нагрузки принимаются максимальные значения активной, реактивной, полной мощности и тока продолжительностью за принятый интервал осреднения по допустимому нагреву элементов СЭС равным 30 минутам.

Понятие электрических нагрузок

Число часов использования максимума нагрузки является важнейшей характеристикой графика электрических нагрузок.

В практике проектирования СЭС применяют различные методы определения расчётных значений электрических нагрузок. Выбор метода расчёта нагрузок во многом зависит от наличия исходной информации.

Суточные графики для отмеченных периодов и их число суток в году, позволяют получить годовые нагрузки.

В практике проектирования СЭС применяют различные методы определения расчётных значений электрических нагрузок. Выбор метода расчёта нагрузок во многом зависит от наличия исходной информации.

Суточные графики одного потребителя в различные времена года отличаются друг от друга. Поэтому для представления о потреблении мощности пользуются суточными графиками для трёх характерных периодов работы потребителей: зимнего, летнего и весенне-осеннего. Соответственно различают наибольшую и наименьшую нагрузки для этих периодов.

К сожалению, требования по усилению существующей сети являются наиболее острым вопросом во взаимоотношениях сетевой организации и присоединяемых лиц. Зачастую сетевая организация из-за финансовых трудностей пытается переложить эти затраты на потребителя, хотя должна нести их сама.

Измерение параметров качества электроэнергии

При необоснованном отказе (или уклонении) с ее стороны заинтересованное лицо вправе обратиться в суд с иском о понуждении к заключению договора и взыскании убытков. Запрещается навязывать потребителю услуги, не предусмотренные законодательно.

Внимание! Требования сетевой организации, чтобы заявитель самостоятельно урегулировал вопросы, связанные с опосредованным присоединением (т.е.

присоединением к электрическим сетям третьих лиц), являются необоснованными.

Сетевая организация обязана урегулировать вопросы с собственником объектов электросетевого хозяйства, через объекты которого будет осуществляться опосредованное присоединение.

https://www.youtube.com/watch?v=glIwwvrVX8o

При рассмотрении Заявки должен учитываться индивидуальный подход, при этом необходимо соблюдать интересы Общества и не подрывать его имидж.

За чей счет производится замена электросчетчика

Например: в случае если заявителем выступает юридическое лицо, то необходимая информация заполняется только пп.1.1 заявки, остальные подпункты (1.2, 1.3 Заявки) из текста заявки удаляются.

Для заключения договора заявитель направляет заявку в сетевую организацию, объекты электросетевого хозяйства которой расположены на наименьшем расстоянии от границ участка заявителя, с учетом условий, установленных законодательством.

Однако применение новой процессорной аппаратуры не всегда говорит о повышении надежности той или иной системы реализованной ранее на релейных схемах.

Вопрос целесообразности применения процессорной или релейной аппаратуры окончательно не решен, и требует частных решений под конкретные объекты.

В разделе представлена информация о современной элементной базе. Рассмотрены некоторые современные системы.

Под расчётными электрическими нагрузками (Pp, Qp, Sp, Ip) понимаются нагрузки значения которых соответствуют такой неизменной токовой нагрузке, которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию на элемент системы электроснабжения.

Качество электроэнергии

При резкопеременных нагрузках (например, сварочные установки) за расчетную нагрузку может быть принята , т.е. .

К третьей категории относятся электроприемники и комплексы электроприемников, не попадающие под определения первой и второй категорий. Электроснабжение их может осуществляться от одного источника питания. Перерыв электроснабжения допускается на время проведения восстановительных работ, но не более одних суток.

Номинальная мощность светильников с лампами накаливания совпадает с потребляемой мощностью, а светильников с разрядными лампами с мощностью только ламп (без учёта потерь мощности в пускорегулирующих устройствах).

Мелкие АД-34%, крупные АД-14, освещение-25%, выпрямители, инверторы, печи, нагревательные приборы-10%, синхронные двигатели-10%, потери в сетях 7-9%.

Реформирование электроэнергетики в России, процедура нового подключения

При этом новый собственник или иной законный владелец энергопринимающих устройств или объектов электроэнергетики обязан уведомить сетевую организацию или владельца объектов электросетевого хозяйства о переходе права собственности или возникновении иного основания владения энергопринимающими устройствами или объектами электроэнергетики.

По мощности электроприемники сельскохозяйственного назначения можно разделить на три группы: большой мощности (свыше 50 кВт), средней мощности (от 1 до 50 кВт) и малой мощности (до 1 кВт). Некоторые приемники используют для работы постоянный ток и токи повышенной (до 400 Гц) или высокой частоты (до 10 кГц).

Правила технологического присоединения устанавливают лишь особенности процедуры технологического присоединения для отдельных категорий потребителей при отсутствии у сетевой организации технической возможности. Специфические нагрузки обычно создаются электродуговыми печами, сварочными установками, полупроводниковыми преобразовательными установками. Эти установки, в основном, принадлежат промышленным предприятиям.

Одной из первых и основополагающих частей проекта электроснабжения объекта является определение ожидаемых электрических нагрузок на всех ступенях электрических сетей.

Потребители электроэнергии различны по своему характеру: промышленные предприятия, жилые дома, коммунально-бытовые учреждения, электротранспорт, с/х потребители и т.д.

Особое внимание! Формы модульных схем технологического присоединения в настоящее время не утверждены Министерством энергетики Российской Федерации. Следовательно, сетевая организация не вправе требовать от заявителей представления модульных схем технологического присоединения до их утверждения Министерством энергетики Российской Федерации, а заявитель не обязан представлять модульные схемы.

В данном пункте необходимо указывать полный адрес местонахождения заявителя: страна; индекс; регион; город (село и т.д.); улицу (проспект и т.д.); номер дома (строения и т.д.); корпуса (пристройка и т.д.); квартиры (офис и т.д.).

За чей счет менять электросчетчики?

Если заявитель выразит согласие осуществить расчеты за технологическое присоединение по индивидуальному проекту в размере, определенном регулирующим органом, сетевая организация не вправе отказать в заключении договора.

Виды электрических нагрузок. Электроприемники, включенные в электрическую сеть для работы, создают в сети нагрузки, которые выражаются в единицах мощности или тока.

При необоснованном отказе или уклонении сетевой организации от заключения договора заинтересованное лицо вправе обратиться в суд с иском о понуждении к заключению договора и взыскании убытков, причиненных таким необоснованным отказом или уклонением.

Понятие электрических нагрузок

Характер нагрузки потребителя электрической энергии виды

Для правильного выбора и проверки проводников (кабелей и шин), а также трансформаторов по экономической плотности тока и соответственно пропускной способности,  расчета потерь и отклонений напряжений, выбора устройств компенсации и защиты необходимо знать электрические нагрузки проектируемого объекта.

Основой рационального решения вопросов электроснабжения современных предприятий и энергосистем является правильное определение электрических нагрузок. При завышении нагрузок – появляются излишние затраты, а также недоиспользование мощностей дорогостоящего оборудования.

При занижении – может приводить к перегрузкам энергосистемы и недоотпускам продукции. Ни первый, ни второй вариант не являются приемлемыми. Данную задачу осложняет еще и то, что имеется довольно много факторов и зависимостей, трудно поддающихся учету при проектировании.

Режимы работы предприятий

Графики и режимы работы предприятий и энергосистем довольно не стабильны и изменяются во времени, как показано на рисунке ниже:

Где: 1 и 2 – это активная и реактивная мощности соответственно.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Довольно много существует различных методов проведения расчетов электрических нагрузок, обзор и анализ их мы не будем приводить в данной статье. Эти методики постоянно совершенствуются как практически, так и теоретически и базируются на обследованиях наиболее характерных предприятиях. Обследования – основа для практического внедрения методик.

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т.д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

Виды электрических нагрузок

Для того, чтоб выполнить проект системы электроснабжения нужно определить следующие виды нагрузок:

  • Средние – мощность, потребленная за максимально загруженную смену. Также могут быть среднемесячные или среднегодовые. Средняя мощность, потребленная за год, нужна для определения годовых потерь электрической энергии, а средняя мощность за максимально загруженную смену – по ней определяют расчетный максимум;
  • Максимально – кратковременные (пиковые) – их определение нужно для проверки колебания напряжения в сетях, для определения параметров срабатывания токовой защиты, выбора плавких предохранителей, проверки электрических сетей по условиям самозапуска электрических машин;
  • Максимальные имеющие различную продолжительность (10, 30, 60 мин) – их используют чтоб произвести расчет электрической сети по нагреву, определения потерь мощности максимальных в сетях, выбор элементов сети по плотности тока (экономической), для определение отклонений напряжений и потерь.

В отдельных отраслях при проектировании систем электроснабжения могут вводить некоторые уточнения и допущения, которые базируются на довольно хорошем знании специфики технологического процесса данной отрасли, а также выявлении, более детальном для данной отрасли, расчетных коэффициентов, расходов энергии, числа часов использования максимума.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

электрическая нагрузка – это… Что такое электрическая нагрузка?

Характер нагрузки потребителя электрической энергии виды

электрическая нагрузка

1. Любой потребитель электроэнергии

электрическая нагрузка
Любой приемник (потребитель) электрической энергии в электрической цепи 1) [БЭС]

нагрузка

Устройство, потребляющее мощность

[СТ МЭК 50(151)-78]

EN

load (1), noun device intended to absorb power supplied by another device or an electric power system

[IEV number 151-15-15]

FR

charge (1), f dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d'énergie électrique

[IEV number 151-15-15]

1)   Иными словами (электрическая) нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.)
Термимн нагрузка удобно использовать как обощающее слово.
В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.
[Перевод Интент]

… подключенная к трансформатору нагрузка
[ГОСТ 12.2.007.4-75*] Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии [ПУЭ], то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности. 2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

нагрузка Мощность, потребляемая устройством

[СТ МЭК 50(151)-78]

EN

load (2), noun power absorbed by a load

[IEV number 151-15-16]

FR

charge (2), f puissance absorbée par une charge Source: 151-15-15

[IEV number 151-15-16]

При проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии. [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

Тематики

  • электроснабжение в целом
  • электротехника, основные понятия

Действия

  • аварийное отключение нагрузки
  • аварийный сброс нагрузки
  • включение нагрузки
  • защитное отключение нагрузки
  • ограничение допустимых нагрузок
  • отключение нагрузки
  • отключение неприоритетных нагрузок
  • передача нагрузки с одной системы шин на другую
  • питание нагрузки
  • регулирование электрической нагрузки

Сопутствующие термины

  • нагрузки жилых зданий
  • нагрузки общественных зданий
  • территориальное расположение нагрузок
  • ток нагрузки
  • токовая нагрузка
  • характер коммунально-бытовой наргрузки
  • характер нагрузки (индуктивный, емкостной)

EN

  • electric demand
  • electric energy demand
  • electric load
  • electrical demand
  • electrical load
  • load

FR

Русско-французский словарь нормативно-технической терминологии. academic.ru. 2015.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.