Трансформатор тока нулевой последовательности принцип работы

Принцип действия ТЗНП, защита нулевой последовательности

Трансформатор тока нулевой последовательности принцип работы

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).

Эти линии электропередач выполняются с эффективно заземленной нейтралью.

В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени.

Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов.

При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу.

Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий.

Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю.

Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

Но так будет только при отсутствии в системе замыканий на землю. При междуфазных КЗ увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие КЗ еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных КЗ имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность КЗ направлена в линию. В других случаях, при КЗ «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Токи небаланса

 Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Токовая защита нулевой последовательности: принцип действия и применение

Трансформатор тока нулевой последовательности принцип работы

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок.

Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети.

Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают  питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю.

Это означает, что в системах 110, 10 и 6 кВ,  для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать.

Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º.

Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку.

Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов  нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения  реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения.

  При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться  величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение  в линиях с заземленной нейтралью. Так как в них  токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания.

Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка.

Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени.

В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt.

А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают.

Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи.

Так как селективность ТЗНП для каждой  из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле.

В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства.

Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем  классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв.

Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности.

Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты.

При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты.

В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650  или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и  пусковое реле для возобновления питания.

Статьи

Трансформатор тока нулевой последовательности принцип работы
sh: 1: –format=html: not found

31 августа 2017 года в 00:44, Чт

ОбщееСП 256.1325800.2016 Проектированиеи монтаж электроустановок жилых и общественных зданийПУЭ 7 изд.Кабельные изделияГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009 Электроустановки низковольтные. Част…

Читать

2 ноября 2016 года в 21:59, Ср

Данная статья взята с сайта http://vgs-design-el.blogspot.ru/ “Проектируем электрику вместе” Об авторе блога http://vgs-design-el.blogspot.ru/Сологубов Виктор Григорьевич, 65 лет. Закончил…

Читать

aliot1970

20 июля 2016 года в 00:04, Ср

Об изменении ГОСТ по качеству ЭЭ на 2016 год. В результате приказом Росстандарта от 22 июля 2013г. №400-ст с 01 июля 2014г. ГOCT Р 54149- 2010 был отменен, в связи с принятием и введением в…

Читать

6 декабря 2015 года в 22:24, Вс

При выборе дизельной электростанции (ДЭС) в качестве автономного (основного или резервного) источника электроэнергии проектировщика подстерегают несколько подводных камней. Одним из таких «камней» явл…

Читать

31 августа 2017 года в 00:44, Чт

ОбщееСП 256.1325800.2016 Проектированиеи монтаж электроустановок жилых и общественных зданийПУЭ 7 изд.Кабельные изделияГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009 Электроустановки низковольтные. Част…

Читать

2 ноября 2016 года в 21:59, Ср

Данная статья взята с сайта http://vgs-design-el.blogspot.ru/ “Проектируем электрику вместе” Об авторе блога http://vgs-design-el.blogspot.ru/Сологубов Виктор Григорьевич, 65 лет. Закончил…

Читать

aliot1970

20 июля 2016 года в 00:04, Ср

Об изменении ГОСТ по качеству ЭЭ на 2016 год. В результате приказом Росстандарта от 22 июля 2013г. №400-ст с 01 июля 2014г. ГOCT Р 54149- 2010 был отменен, в связи с принятием и введением в…

Читать

6 декабря 2015 года в 22:24, Вс

При выборе дизельной электростанции (ДЭС) в качестве автономного (основного или резервного) источника электроэнергии проектировщика подстерегают несколько подводных камней. Одним из таких «камней» явл…

Читать

Page 3

14 мая 2015 года в 13:20, Чт

Удобный онлайн-конвертор величинhttp://www.translatorscafe.com/cafe/RU/units-converter/moment-of-force/8-2/kilogram-force_meter-kilonewton_meter/…

Читать

5 мая 2015 года в 18:23, Вт

Проще в использовании по сравнению с бумажными таблицами координацииБыстрее, чем тяжелые программные продукты, разработанные для комплексных электротехнических расчетовВсегда актуальная информация об…

Читать

29 апреля 2015 года в 11:47, Ср

Публичная кадастровая карта – это справочно-информационный сервис для предоставления пользователям сведений Государственного кадастра недвижимости на территорию Российской Федерации.Сервис предлагает…

Читать

28 апреля 2015 года в 17:48, Вт

Веб-сервисы для кадастровых инженеров — это полезные механизмы, например, для конвертирования информации в другой формат, в другую XML-схему, проверка схем, просмотр графики и т.п.Каждый сервис выполн…

Читать

Page 4

alexc_merkachev

Скачиваний: 0

vitek908

Скачиваний: 0

uchalov81

Скачиваний: 0

rakken

Скачиваний: 0

serg752

Скачиваний: 0

Все файлы представлены исключительно для ознакомления и не должны использоваться в коммерческих целях.

После ознакомления удалите со своего компьютера файлы, взятые с сайта.Для использования в профессиональной деятельности (проектирование и т.п.) необходимо приобретатьдокументацию у разработчика или официальных распространителей (поставщиков).

Все материалы представленные на сайте были отсканированы и присланы посетителями данного ресурса.Достоверность представленной информации не гарантируется. Вся информация выкладывается “как есть” (в том виде, в каком была прислана).

Если в оригинале документа присутствовал знак защиты авторских прав ©, удаление данного знака лежит целиком на совести лица,приславшего материал. При выявлении таких документов, они будут незамедлительно удалены.

Если вы являетесь правообладателем и считаете, что размещение файла на данном рессурсе нарушает Ваши авторские права, то пожалуйста свяжитесь с администрацией сайта и данный файл будет незамедлительно удалён.

Page 5

Для скачивания необходимо зарегистрироваться на сайте.

ПКЭНЕРГИЯ

Скачиваний: 39

Различные варианты крепления провода марки СИП с помощью линейной арматуры и не только. Формат файла: dwg.

Все файлы представлены исключительно для ознакомления и не должны использоваться в коммерческих целях.

После ознакомления удалите со своего компьютера файлы, взятые с сайта.Для использования в профессиональной деятельности (проектирование и т.п.) необходимо приобретатьдокументацию у разработчика или официальных распространителей (поставщиков).

Все материалы представленные на сайте были отсканированы и присланы посетителями данного ресурса.Достоверность представленной информации не гарантируется. Вся информация выкладывается “как есть” (в том виде, в каком была прислана).

Если в оригинале документа присутствовал знак защиты авторских прав ©, удаление данного знака лежит целиком на совести лица,приславшего материал. При выявлении таких документов, они будут незамедлительно удалены.

Если вы являетесь правообладателем и считаете, что размещение файла на данном рессурсе нарушает Ваши авторские права, то пожалуйста свяжитесь с администрацией сайта и данный файл будет незамедлительно удалён.

by

Page 6

  1. Проектирование электроснабжения
  2. Строительство объектов электроснабжения

Занимаю должность гл.Энергетика. Работу электрика прошел самых низов. мне было очень интересно этим заниматься (электромонтажом различных объектов от мала до велика.) Сейчас все чаще приходиться напрягать мозги ,а не мышцы.Но и это приносит плоды удовлетворения.

by Disqus

Page 7

  1. Проектирование электроснабжения
  2. Строительство объектов электроснабжения

электрик-аврийщик 0,4 кВ,начальник электромонтажного участка,проектировщик электроснабжения 10 кВ,начальник электротехнической лаборатории,начальник проектного отдела by Disqus

Page 8

  1. Строительство объектов электроснабжения

Электромонтажные работы  в квартире, на дачи, офисе. 

by Disqus

Page 9

  1. Проектирование электроснабжения
  2. Строительство объектов электроснабжения

Электромонтаж Подольск, электромонтажные работы в Москве и области, с удовольствием.!!! Только Российские дипломированные  специалисты!

by Disqus

Page 10

  1. Проектирование электроснабжения
  2. Строительство объектов электроснабжения

Проектирование и монтаж электрических сетей, освещения и видеонаблюдения. Альтернативная энергетика: ветро-электростанции, солнечные электростанции, ИБП, ДГУ.

by Disqus

Page 11

  1. Проектирование электроснабжения
  2. Строительство объектов электроснабжения
  • обследования объектов строительства или реконструкции с выдачей рекомендаций по их развитию;
  • специализированная помощь по вопросам присоединения к электрическим сетям;
  • согласования проектной и исполнительной документации на стадии проекта и строительства.

Мы оказываем услуги по оформлению:

  •  технических условий на присоединение мощности к электросетям;
  •  разрешений на присоединение мощности к электросетям;
  • открытию и закрытию ордеров на проведение земляных и прочих строительных работ;
  • проектов производства работ;
  • проектов электроснабжения.

Разработка проектной документации:

  • электроснабжения и электрооборудования объектов, зданий и сооружений;
  •  Проектирование сетей электроснабжения
  • Проектирование электроснабжения жилых и нежилых помещений
  • Разработка проекта электроснабжения высоковольтных сетей до 110 кВ
  • Проектирование систем электроснабжения объектов
  • строительства, реконструкции и оборудования электрических станций и подстанций до 110 кВ;
  • Проектирование электрических подстанций
  • Проектирование трансформаторных подстанций
  • электрических сетей 0,4-110 кВ.
  • промышленные объекты, склады и т.п.;
  • жилые кварталы и районы;
  • линии электроснабжения удаленных объектов.

Высококвалифицированные специалисты проектировщики с большим стажем, работающие в нашем коллективе, всегда готовы оказать качественную помощь по проектированию в области строительства и электроснабжения.

Комплекс работ связанных с вводом в эксплуатацию электроустановок низкого, среднего и высокого напряжения:

  • выполнение полного спектра  работ по монтажу новых отдельно стоящих и встроенных РП, РТП, ТП, БКРТП, БКТП и ПС, а также реконструируемых;
  • прокладка кабельных трасс напряжением 0,4 – 110 кВ;
  • пуско-наладочные работы всего комплекса;
  • технические консультации на всех этапах проведения работ.

Комплекс работ, включающий проверку, настройку и испытания электрооборудования с целью обеспечения электрических параметров и режимов, заданных проектом:

  • наладка электрооборудования в электрических сетях до 110 кВ включительно;

Трансформатор тока нулевой последовательности

Трансформатор тока нулевой последовательности принцип работы

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока.

С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения.

Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах.

Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С.

Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях.

Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей.

Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения.

Они применяются для измерений токов и напряжений с большими величинами.

На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях.

Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе.

Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю.

Они применяются в сетях с изолированной нейтралью и схемах релейной защиты.

Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях.

Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки.

Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Трансформаторы тока нулевой последовательности для использования в схемах релейной защиты совместно с микропроцессорными терминалами релейной защиты

Трансформатор тока нулевой последовательности принцип работы

В электрических системах, в особенности в сетях и установках с малым током замыкания на землю, возможные токи нулевой последовательности часто весьма невелики по сравнению с токами нормальной нагрузки. Тем более они не велики по сравнению с токами короткого замыкания между фаз.

Еще меньше должны быть расчетные токи нулевой последовательности при срабатывании различных устройств релейной защиты от замыкания на землю, защитного отключения и автоматики с учетом задаваемых коэффициентов чувствительности и запаса.

Токи нормальных нагрузок и междуфазных коротких замыканий могут создавать значительные токи небаланса в трансформаторах нулевой последовательности.

Необходимость ограничения этих небалансов, являющихся для трансформаторов тока нулевой последовательности (ТТНП) основным видом помех, представляет основную трудность, которую приходится преодолевать при разработке и применении рассматриваемых устройств.

Следует также иметь ввиду, что при небольших токах нулевой последовательности от ТТНП с приемлемыми конструктивными размерами может быть получена небольшая мощность, порядка долей В·А.

Получение заданной мощности тем труднее, чем больше номинальный рабочий ток контролируемой цепи. Это обусловлено необходимостью увеличения сечения первичных токопроводов и кабелей по условиям нагрева и соответственно – увеличения размеров окна магнитопроводов трансформаторов тока. А с увеличением окна при заданной мощности масса преобразователя резко возрастает.

Таким образом, появились определенные требования к трансформаторам тока нулевой последовательности, выполнение которых позволило бы производить точную отстройку защиты, учитывая большинство существенных паразитных явлений. Можно перечислить основные из них:

  • коэффициент трансформации и чувствительность ТТНП должны позволять измерять токи различных диапазонов, включая малые токи от 100 мА
  • максимальный ток небаланса ТТНП должен быть минимален и заранее известен
  • мощность ТТНП должна быть регламентирована и заранее известна (влияние нагрузки погрешности при заданном коэффициенте трансформации)

Существующие предложения на рынке

В настоящее время наиболее распространены два варианта конструктивного исполнения трансформаторов тока нулевой последовательности:

  • с тороидальным магнитопроводом разъемной и неразъемной конструкции, например ТЗЛК-НТЗ-0,66 и ТЗЛКР-НТЗ-0,66
  • с магнитопроводом прямоугольной формы неразъемной конструкции, например ТЗЛК-НТЗ-0,66-100х490

Подобные ТТНП выпускают как все отечественные, так и зарубежные производители трансформаторов тока.

Наибольшее распространение получили кабельные ТТНП с коэффициентом трансформации равным 25/1 и 30/1. Малый коэффициент трансформации, в свое время, был принят для обеспечения условия передачи во вторичную цепь максимально возможной мощности, достаточной для срабатывания электромагнитного реле, типа РТ-40, РТ-140 и РТЗ-51.

Однако при таком малом коэффициенте трансформации токовая и угловая погрешности ТТНП, даже при весьма малом сопротивлении вторичной цепи, достигают больших значений, 10, 15 и даже 20% по токовой погрешности и до 30 электрических градусов по угловой.

В настоящее время выпускаются, в том числе и российскими производителями, ТТНП с большим витковым коэффициентом трансформации (например 100/1 или 470/1). Но стоит отметить, что и такие трансформаторы тока нулевой последовательности не сопровождаются данными о гарантированных токовых и угловых погрешностях в зависимости от сопротивления во вторичной цепи.

Также у существующих трансформаторов тока нулевой последовательности максимальный ток небаланса или никак не регламентируется, или имеет значения, не позволяющие делать точную отстройку защиты.

Возможное решение проблемы. Предложение на рынок

ООО «Невский трансформаторный завод «Волхов» совместно с ООО НПП «ЭКРА» разработали трансформатор тока нулевой последовательности, удовлетворяющий необходимым требованиям современной электроэнергетики в схемах защит от однофазных замыканий на землю.

Расшифровка условного обозначения трансформаторов, предназначенных для работы с микропроцессорными терминалами релейной защиты

Пример записи обозначения трансформатора тока нулевой последовательности, разъемного, предназначенного для работы совместно с микропроцессорным терминалом релейной защиты, с литой изоляцией, устанавливающегося на кабель, изготовленного по ТУ 3414-006-30425794-2012, на номинальное напряжение 660 В, с диаметром окна для кабеля 100 мм, с максимальной величиной токовой погрешности не более 5 % и угловой погрешности не более 20 электрических градусов, при сопротивлении вторичной нагрузки ТТНП не более 1 Ом, изготовленного с коэффициентом трансформации 100/1, в климатическом исполнении «У» и категории размещения 2 по ГОСТ 15150-69 при его заказе и записи в документации другого изделия:

Трансформатор тока нулевой последовательности
ТЗЛКР-НТЗ-0.66-100-5-1-100/1 У2 МЗ
ТУ 3414-006-30425794-2012

Основные характеристики ТТНП, предназначенных для работы в схемах микропроцессорной защиты от однофазных замыканий на землю

Номинальное напряжение, кВ0,66
Наибольшее рабочее напряжение, кВ0,72
Диаметр окна для установки кабеля, мм70, 100, 125, 205
Номинальная частота, Гц50 или 601*
Число обмоток1
Номинальный первичный ток2*, А100200
Номинальный вторичный ток, А1, 5
Предельное значение сопротивление нагрузки во вторичной цепи трансформатора, Ом0,3; 0,5; 1,0; 1,5; 2,0; 3,0
Максимальная токовая и угловая погрешности трансформатора при сопротивлении вторичной нагрузки до 3 Ом в диапазоне первичного тока от 0,5 до 120%Не более 5% и10 эл.грдНе более 6% и20 эл.грд
Односекундный 3* ток термической стойкости, А140
Ток небаланса, не болеесм. таблицы ниже

1* Для экспортных поставок
2* Возможно изготовление трансформаторов с отличающимся номинальным первичным током
3* Допускается распространять для трехсекундного тока термической стойкости.

Преимущества разработанного ТТНП

Гарантированная максимально возможная величина тока небаланса, измеренная на заводе-изготовителе, вносится в паспорт на трансформатор.

Малая величина тока небаланса имеет первостепенное значение при малом ёмкостном токе замыкания на землю в сети, так как выбор уставки срабатывания защиты от ОЗЗ производится с учетом отстройки по току небаланса во вторичных цепях. У обычных ТТНП (даже с неразъемной конструкцией) ток небаланса достигает 0,6 А при 100% рабочего тока, что существенно затрудняет отстройку уставки срабатывания защиты от ОЗЗ.

Максимальный ток небаланса ТТНП типа ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ, измеренный при 100% рабочего тока представлен в таблицах ниже.

Токи небаланса ТТНП типа ТЗЛК-НТЗ МЗ

ИзделиеТок небаланса, измеренный при рабочем токе 100 А и приведенный к первичной стороне не более А
ТЗЛК-НТЗ-0.66-70 МЗ0,04
ТЗЛК-НТЗ-0.66-100 МЗ
ТЗЛК-НТЗ-0.66-125 МЗ
ТЗЛК-НТЗ-0.66-205 МЗ0,08

Токи небаланса ТТНП типа ТЗЛКР-НТЗ МЗ

ИзделиеТок небаланса, измеренный при рабочем токе 200 А и приведенный к первичной стороне не более А
ТЗЛКР-НТЗ-0.66-70 МЗ0,5
ТЗЛКР-НТЗ-0.66-100 МЗ
ТЗЛКР-НТЗ-0.66-125 МЗ
ТЗЛКР-НТЗ-0.66-205 МЗ0,8

ТТНП обладает гарантированной величиной токовой и угловой погрешности при вторичной нагрузке до 3 Ом. Примеры результатов измерений токовых и угловых погрешностей ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ отображены на диаграммах ниже.

Предельные токовые погрешности ТТНП типа ТЗЛК-НТЗ МЗ

Предельные угловые погрешности ТТНП типа ТЗЛК-НТЗ МЗ

Предельные токовые погрешности ТТНП типа ТЗЛКР-НТЗ МЗ

Предельные угловые погрешности ТТНП типа ТЗЛКР-НТЗ МЗ

ТТНП обладает высоким качеством изготовления продукции. Трансформаторы сохранили все массогабаритные параметры ТТНП, предназначенных для работы с электромеханическими реле, обладая при этом более широким спектром электрических и метрологических характеристик.

Массогабаритные характеристики ТТНП типа ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ

ИзделиеМассогабаритные характеристики
НеразъемныеРазъемные
Масса, кгГабариты, ммМасса, кгГабариты, мм
ТЗЛК(Р)-НТЗ-70 МЗ3,2155х144х805,3172х212х76
ТЗЛК(Р)-НТЗ-100 МЗ5,9212х206х806,2200х245х76
ТЗЛК(Р)-НТЗ-125 МЗ6,3235х230х807,2267х225х76
ТЗЛК(Р)-НТЗ-205 МЗ9,5320х318х808,9347х320х76

Выводы

  1. Предприятие ООО «Невский трансформаторный завод «Волхов» успешно разработало и внедрило в серийное производство трансформаторы тока нулевой последовательности кабельные с гарантированными токовыми и угловыми погрешностями, с нормированной нагрузочной характеристикой, с нормированными токами небаланса.

  2. Предприятие разработало и применяет методику приемо-сдаточных испытаний трансформаторов тока нулевой последовательности, согласованную с ведущим производителем микропроцессорных терминалов РЗиА, гарантирующую необходимые для точной отстройки терминалов защиты от ОЗЗ.

  3. Все необходимые параметры ТТНП, применяемые при отстройке защиты от ОЗЗ, указываются в паспорте на изделие.

Бадулин Д.Н.

Что такое токовая защита нулевой последовательности

Трансформатор тока нулевой последовательности принцип работы
Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение.

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Интересно! Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Важно! Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная.

При этом угол сдвига фаз в обоих случаях составляет 120 градусов.

При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Тогда:

I0=1/3(Ik+0+0)

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Как это работает

Принцип работы ТЗНП заключается в отключении коммутационной аппаратуры в случае однофазных замыканий с определенной выдержкой времени. Задержка времени нужна для организации селективности защит на разных трансформаторных подстанциях.

Пример схемы токовой защиты нулевой последовательности изображен на рисунке ниже:

В ней используется токовое реле КА и реле мощности KW. Для контроля тока по фазам в ТЗНП используются трансформаторы тока (ТТ). Это специальные измерительные трансформаторы надеваются на шину или провод. На его обмотках наводится ЭДС пропорциональное току, протекающему через жилу или шину.

Одним из главных условий корректной работы ТЗНП является то, чтобы у ТТ были одинаковые кривые намагничивания. Это значит, что они должны быть не просто одинаковы по входным и выходным характеристикам, но и быть одной марки. Кроме того, стоит отметить, что погрешности их выходных параметров не должны быть больше 10 процентов. Их вы видите на картинке ниже.

Чтобы получить токи выведенной из баланса системы сигнал пропускают через фильтр. В реальном применении соединяют обмотки трансформаторов между собой. Это называют фильтром токов нулевой последовательности.

В нормальном состоянии электросети токи нулевой последовательности равны нулю, соответственно Iвыходные фильтра ТЗНП тоже равны нулю. В аварийном режиме, при КЗ, выходной ток отличен от нуля. Остальные части ТЗПН настраиваются таким образом, чтобы исключить ложные срабатывания под определенный ток КЗ.

Если ранее токовая защита нулевой последовательности представляла собой релейные схемы, то в настоящее время выпускаются микропроцессорные терминалы для защитных цепей. То есть, современная ТЗНП может выполняться на микроконтроллерных схемах.

Рассмотренная система используется в качестве резервной защиты. Благодаря её свойствам можно достичь селективность срабатывания, где РЗиА каждой последующей ТП срабатывает быстрее, чем на предыдущей. Защита нужна чтобы минимизировать дальнейшие повреждения ЛЭП, трансформаторов, генераторов, а также, чтобы обезопасить окружающую среду и людей, которые могут попасть в опасную зону.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.