Термосопротивление принцип работы

Термометры сопротивления: виды, типы конструкции, классы допуска

Термосопротивление принцип работы

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры.

В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями.

Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Расшифровка аббревиатур

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С.

К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции.

Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С).

Основное достоинство данных приборов – высокий уровень выходного сигнала.

В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С).

К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление».

Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Внешний вид термопреобразователя ТСМ 1088 1

Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3).

Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева.

Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах.

Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением.

Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Класс точностиНормы допуска°C |t |Диапазон измерения температуры
Платиновые датчикиМедныеНикелевые
ПроволочныеПленочные
AA±0,10+0,0017-50°C …250°C-50°C …150°Cxx
A±0,15+0,002-100°C …450°C-30°C …300°C-50°C …120°Cx
B±0,30+0,005-196°C …660°C-50°C …500°C-50°C …200°Cх
С±0,60+0,01-196°C …660°C-50°C …600°C-180°C …200°C-60°C …180°C

Приведенная в таблице погрешность отвечает текущим нормам.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

  • 2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик. Обратим внимание, что для классов точности A и AA данная схема включения неприемлема.Рисунок 7. Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления
  • 3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.
  • 4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

https://www.youtube.com/watch?v=jP0vp1dY374

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.

Обслуживание

Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.

Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:

  • Проверка условий, в которых эксплуатируется датчик.
  • Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
  • Помимо этого проверяется наличие пломб.
  • Проверяется заземление.

Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.

Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.

Платиновый эталонный ПТС (датчик ЭТС 100)

Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.

Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)

Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.

Датчики температуры

Термосопротивление принцип работы

Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.

Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.

Для большинства металлов температурный коэффициент сопротивления положителен – их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен – их сопротивление с ростом температуры падает.

Термисторы

Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.

  • PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
  • NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры

PT100, PT1000

Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.

KTY

Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Схемы включения термосопротивления в измерительную цепь

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
  • 4-х проводная схема – наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов

Сравнение термометров сопротивления с термопарами

Преимущества:

  • выше точность и стабильность
  • можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • практически линейная характеристика
  • не требуется компенсация холодного спая

Недостатки:

  • малый диапазон измерений
  • не могут измерять высокую температуру.

Термопары

Термопара (Thermocouple) – это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется – рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.

Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.

Подключение к ПЛК

Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.

При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.

Типы термопар

  • K: хромель-алюмель
  • J: железо-константан
  • S, R: платина-платина/родий и др.

Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.

Преимущества термопар

  • Большой температурный диапазон измерения
  • Измерение высоких температур.

Недостатки

  • Невысокая точность
  • Необходимость вносить поправку на температуру холодного конца.

Термостаты

Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.

Термистор или терморезистор: определение, виды, как работает и как выбрать

Термосопротивление принцип работы

Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры. Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.

Существует два типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.

Термистор PTC работает немного по-другому. Когда температура увеличивается, сопротивление увеличивается, а когда температура уменьшается, сопротивление уменьшается. Этот тип термистора обычно используется в качестве предохранителя. Огромный выбор терморезисторов вы можете посмотреть и приобрести на Алиэкспресс:

Как правило, термистор достигает высокой точности в ограниченном температурном диапазоне около 50ºC относительно целевой температуры. Этот диапазон зависит от базового сопротивления.

Термистор на схеме

Стрелка Т обозначает, что сопротивление является переменным в зависимости от температуры. Направление стрелки или полосы не имеет значения.

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры.

Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения. Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

История термистора

Майкл Фарадей — английский ученый впервые открыл понятие термисторов в 1833 году, сообщая о полупроводниковом поведении сульфида серебра. Благодаря своим исследованиям он заметил, что устойчивость к сульфидам серебра снижалась с повышением температуры.

 Это открытие впоследствии привело к коммерческому производству термисторов в 1930-х годах, когда Сэмюэль Рубен изобрел первый коммерческий термистор.

 С тех пор технология улучшилась; прокладывать дорогу к совершенствованию производственных процессов; наряду с доступностью более качественного материала.

Как работает термистор

Термистор на самом деле ничего не «читает», вместо этого сопротивление термистора меняется в зависимости от температуры. Степень изменения сопротивления зависит от типа материала, используемого в термисторе.

В отличие от других датчиков, термисторы являются нелинейными, то есть точки на графике, представляющие взаимосвязь между сопротивлением и температурой, не будут образовывать прямую линию. Расположение линии и степень ее изменения определяется конструкцией термистора. Типичный график термистора выглядит следующим образом:

Как изменение сопротивления преобразуется в измеримые данные, будет подробно рассмотрено ниже.

Разница между термистором и другими датчиками

В дополнение к термисторам используются несколько других типов датчиков температуры.

 Наиболее распространенными являются резистивные датчики температуры (RTD) и интегральные схемы (IC), такие как типы LM335 и AD590.

 Какой датчик лучше всего подходит для конкретного использования, зависит от многих факторов. В приведенной ниже таблице дано краткое сравнение преимуществ и недостатков каждого из них.

ПараметрТермисторRTDLM335AD592
Разница температурВ пределах ~ 50° С от заданной центральной температурыОт −260° C до + 850° C  От −40° C до + 100° C  От -20° C до + 105° C  
Относительная стоимость  НедорогойСамый дорогойДорогойДорогой
Постоянная времениОт 6 до 14 секундОт 1 до 7 секундОт 1 до 3 секундОт 2 до 60 секунд
СтабильностьОчень стабильный, 0,0009° C~0.05° С~0.01° С~0.01° С
Чувствительность  ВысокоНизкийНизкийНизкий
Преимущества  ДолговечныйДолгоиграющийВысокочувствительныйМаленький размерСамая низкаяСтоимостьЛучше всего подходит для измерения температуры в одной точке  Лучшее время откликаЛинейный выходСамый широкий диапазон рабочих температурЛучше всего для измерения диапазона температур  Умеренно дорогоЛинейный выход  Умеренно дорогоЛинейный выход  
НедостаткиНелинейный выходОграниченный температурный диапазонМедленное время отклика  ДорогоНизкая чувствительность  Ограниченный температурный диапазонНизкая чувствительностьБольшой размер  Самое медленное время откликаОграниченный температурный диапазонНизкая чувствительностьБольшой размер  

Температурный диапазон: приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.

Относительная стоимость: относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.

Постоянная времени: приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.

Стабильность: способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.

Чувствительность: степень реакции на изменение температуры.

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа.

Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Термисторный чип обычно монтируется на печатной плате (PCB). Существует много, много разных форм термисторов, и некоторые примеры:

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Какое сопротивление термистора и ток смещения следует использовать

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре окружающей среды, которая считается 25° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, как определено производителем. Они должны быть определены до выбора датчика. Поэтому важно знать следующее.

Каковы максимальные и минимальные температуры для устройства

Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от температуры окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов работают лучше всего в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, то естьзначения температуры и сопротивления изображены на графике в виде кривой, а непрямой линии, очень высокие или очень низкие температуры регистрируютсянеправильно. Например, очень небольшие изменения при очень высокихтемпературах будут регистрировать незначительные изменения сопротивления,которые не приведут к точным изменениям напряжения.

Каков оптимальный диапазон термисторов

В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором небольшие изменения температуры точно регистрируются.

В таблице ниже приведены наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.

Лучше всего выбрать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры.

 Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором TCS10K5 10 кОм длины волны.

 В TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 до 1° C, и 43 мВ / °C в диапазоне от 25 до 26 ° C, и 14 мВ ° C в диапазоне от 49 до 50 ° C. C.

Каковы верхний и нижний пределы напряжения на входе датчика регулятора температуры

Пределы напряжения обратной связи датчика к регулятору температуры устанавливаются производителем. В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения того, какой ток смещения необходим. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

V = I BIAS x R

Где: V — напряжение, в вольтах (В) 

I BIAS — ток, в амперах или амперах (A) 

I BIAS — постоянный ток, 
R — сопротивление, в Ом (Ом)

Термосопротивление

Термосопротивление принцип работы

Датчики этого типа применяют для измерения температуры газа или жидкости. Использование таких изделий помогает получать данные оперативно, с высокой точностью. Серийное термосопротивление отличается доступной ценой, устойчивостью к различным внешним воздействиям. Кроме длительного сохранения функционального состояния, следует подчеркнуть простоту монтажа и технического обслуживания.

Типичное термосопротивление

Принцип работы термосопротивления

Датчик подключают в цепь со стабилизированным источником питания и подходящим по классу точности прибором (вольтметром, амперметром). С помощью этой простой схемы будет определяться измеряемый параметр по регистрации соответствующих электрических величин. Принцип работы обусловлен зависимостью сопротивления проводника от температуры проводника при нагреве или охлаждении.

Зависимость проводимости от температуры

В металлах движению свободных электронов создают препятствия примеси. На прохождение заряженных частиц оказывает влияние состояние кристаллической решетки.

По мере снижения температуры амплитуда колебаний молекул уменьшается. При достижении определенного уровня возникает сверхпроводимость, когда сопротивление становится пренебрежительно малой величиной.

Нагрев провоцирует обратные реакции компонентов молекулярной решетки. Соответствующим образом ухудшается проводимость.

Чем отличается термосопротивление от термопары

Коэффициент трансформации

Принцип действия ТС объясняется изменением проводимости контрольного участка цепи. Термопара, несмотря на схожее название, функционирует по-другому.

Изделия этой категории создают из двух разных материалов. Соединение (рабочую спайку) помещают в зону измерений. Колебания температуры провоцируют изменение потенциалов на выходах.

Эти показания фиксируют вольтметром или другим подходящим прибором.

Принцип действия, функциональные компоненты термопары и способы измерения

К сведению. Приведенные сведения объясняют главные практические отличия датчиков разного рода. Термопара фактически является генератором ЭДС, поэтому дополнительный источник тока не нужен.

Термопарный преобразователь можно применить для измерения вакуума. Для этого обеспечивают контакт чувствительного участка с нитью лампы накаливания. Колбу соединяют трубкой с рабочей зоной. Изменение разряжения газа сопровождается увеличением (уменьшением) ЭДС. После калибровки шкалы достаточно точно можно определять значение контролируемого параметра.

Почему ломаются датчики

Чтобы предотвратить повреждение ТС, нужно соблюдать установленный в техническом паспорте температурный режим. При повышенной влажности нарушение функциональности провоцируют процессы коррозии. Следует исключить вибрации, чрезмерные механические воздействия. Для улучшения помехозащищенности применяют экранировку.

Преимущества и недостатки термометров сопротивления

При сравнении с термопарой можно упомянуть следующие минусы ТС:

  • высокую стоимость;
  • обязательное использование внешнего источника стабилизированного электропитания;
  • ограниченный рабочий диапазон.

Плюсы:

  • линейный график измеряемых параметров;
  • точность;
  • корректная компенсация искажений от соединительных проводов.

Выбор подходящего датчика организуют на основе подготовленных критериев. Кроме базовых технических параметров, уточняют допустимые габариты, условия эксплуатации. Для продления срока службы необходимы регулярные проверки состояния термосопротивления и других компонентов измерительной схемы.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.