Сопротивление контура заземления нормы

Сопротивление растеканию тока заземляющего устройства норма – На обе руки мастер

Сопротивление контура заземления нормы

Основной характеристикой заземляющего защитного устройства является сопротивление.

Сопротивление заземления включает в себя сопротивление грунта, проходящего через него тока, сопротивление заземлителя и сопротивление проводников.

Две последние величины зачастую имеют малые значения по сравнению с сопротивлением растекания тока.

Заземление, которое проходит в доме требует проверки, для удостоверения в своей исправности.

После окончания работ по монтажу заземления, вся защитная линия подвергается тщательному осмотру и диагностики на предмет невредимости и правильности соединения.

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ).

Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф.

Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления.

Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью.

В практическом плане такого показателя добиться невозможно.

Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой.

В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы.

При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом.

В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы.

Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием.

Дефекты, возникающие в металлосвязи, ведут к короткому замыканию.

Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом.

В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка.

В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки.

Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Испытания сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления.

Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию.

При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

Источник: https://uzotoka.ru/zazemlenie/chto-takoe-soprotivlenie-zazemleniya.html

Сопротивление растеканию тока заземлителя: порядок измерения контура, приборы и оформление документации

Заземление — это намеренное электрическое соединение частей и узлов электрооборудования с заземляющим устройством.

При помощи такого устройства осуществляют защиту от поражения электрическим током путем снижения напряжения до безопасного значения при прикосновении человека или животного.

Измерение сопротивления растеканию тока заземлителя необходимо для определения соответствия устройства защиты техническим нормам.

Измерение сопротивления заземляющих устройств проводят с периодичностью, установленной на предприятии, но не реже одного раза в 12 лет. Для более точного измерения создают искусственную электрическую сеть.

Рядом с испытуемым контуром в грунт встраивают вспомогательное устройство, которое называют токовым электродом, и его тоже подключают к сети. А также устанавливают электрод, по которому определяют падение напряжения в сети.

Чтобы измерить и получить более достоверные данные, в момент проведения процесса должны быть оптимальные погодные условия.

То есть сопротивление почвы в этот момент должно быть максимальным.

При этом должны быть выполнены следующие условия:

  • электрод, с которого будут снимать показания, располагают строго между заземляющей конструкцией и дополнительным электродом;
  • расстояние между элементами должно равняться пятикратной глубине закладки заземлителя;
  • при замере системы заземлителей во внимание принимается диагональ с наибольшей длиной.

Кроме того, дополнительно проводят замеры сопротивления изоляции.

Применяемые приборы

В связи с тем, что бытовой тестер не способен обеспечить высокое напряжение, его использовать для этой процедуры нельзя.

Обычно используют приборы, которые давно выпускает промышленность, но существуют и новые модели, работающие по новым электронным технологиям.

Все они характеризуются низким потреблением тока от встроенного питания. Среди них стоит отметить следующие модели:

  1. Ф4103-М1 — популярный прибор для выполнения работ по замеру контуров разных геометрических форм и размеров. Погрешность измерений прибором составляет 4%, а частота тока — от 265 до 310 Гц. Питание аппарата осуществляется от 9 батареек А373, при этом потребление тока не превышает 160 мА.
  2. М-416 — эксплуатация этого аппарата для измерения осуществляется довольно давно. Отличается высокой точностью снимаемых показаний и надежностью в работе. Кроме замеров сопротивления заземления, этим измерителем можно определить удельное сопротивление грунта. Диапазон измерений составляет от 0,1 до 1000 Ом.
  3. Fluke 1625−2 GEO — является более современным прибором, способным проводить измерение с помощью одних зажимов. В этом случае заземляющие электроды не используются. Кроме замеров сопротивления заземления, можно проверять и защиту от молний.

Помимо этого, можно отметить следующие модели: MRU-101, ИС-20/1, ИС-10 и др.

Порядок выполняемых работ

Чтобы измерить сопротивление заземления, кроме прибора, следует подготовить два отрезка арматуры или трубы. Они будут выполнять роль токового и потенциального электрода.

Кроме того, необходимо подготовить провода соответствующей длины.

Замер проводят, учитывая особенность сборки конструкции контура, а именно применяют две схемы:

  1. Для проверки несложной схемы заземления электроды подключают линейно. Потенциальная заготовка должна находиться в 20 м от заземления, а токовый — в 12 м от потенциального электрода.
  2. В случае со сложными схемами такой метод использовать не рекомендуется, так как он не будет соответствовать разрешенным нормам. При измерении заземления контура определяют наибольшую его диагональ. Потенциальный устанавливают на расстоянии равном пяти диагоналям, а в 20 м от него забивают токовый электрод.

В качестве аппарата для измерения используют прибор М-416, так как он является самым распространенным и надежным.

Его работа основана на принципе компенсационного метода, он должен быть проверен и иметь соответствующую запись в паспорте.

Сначала прибор необходимо отрегулировать, установив переключатель в положение 5 Ом.

Затем, управляя реохордой, отрегулировать стрелку ближе к нулю.

Затем отсоединяют контур от заземляющего проводника, а прибор подключают к соответствующим электродам.

Окончание заземлителя, который будут проверять, тщательно зачищают, чтобы исключить посторонние помехи при проверке, а затем к нему подсоединяют прибор. В зависимости от получения показаний сопротивления прибор подсоединяют двумя или четырьмя проводами.

В первом случае предполагают регулировку сопротивления более 5 Ом, а во втором оно должно быть ниже этого значения. Как правильно подключать проводники прибора к заземлению, показано в его паспорте.

После подключения проводников нажимают соответствующую кнопку, предварительно обнулив показания. В итоге на шкале реохорда будет отражено значение сопротивления заземлителя.

Оформление результатов

Обязательно после проведенных измерений оформляют соответствующий документ. Все записи проводятся на специальном бланке определенной формы. В нем указываются:

  • наименование объекта;
  • схема монтажа заземляющих электродов и их соединений;
  • план контура заземления;
  • способ определения сопротивления.

Кроме того, в соответствующей графе указывают наименование прибора, которым осуществлялись все замеры.

Обязательно все показания замера сопротивления контура заземления заносятся в паспорт устройства. Специалисты оформляют отдельный протокол, в котором отражают показания испытаний переходных сопротивлений.

Сопротивление заземления молниезщиты

Сопротивление контура заземления нормы

Принцип действия громоотвода – перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория – 10 Ом;
  • III категория – 20 Ом;
  • Если электропроводность превышает 500 Ом*м – 40 Ом;
  • Наружные установки – 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр – сопротивление заземления – зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами – 10-60 Ом*м;
  • Песок сухой – 1500-4200 Ом*м;
  • Бетон – 40-1000 Ом*м;
  • Чернозем – 60 Ом*м;
  • Глина – 20-60 Ом*м;
  • Илистая почва – 30 Ом*м;
  • Садовая земля – 40 Ом*м;
  • Супесь – 150 Ом*м;
  • Суглинок полутвердый – 100 Ом*м;
  • Солончак – 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров.

Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства.

Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму – протокол проверки сопротивлений заземлителей и  заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II – 1 раз в год перед сезоном гроз, для III категории – не реже 1 раза в 3 года, для взрывоопасных объектов и производств – не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания “МЗК-Электро” предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам – вы гарантированно получите надежную молниезащиту!

Нормы «Нормы устройства сетей заземления»

Сопротивление контура заземления нормы

Р.Н. КАРЯКИН

доктор техн. наук, профессор

НОРМЫ УСТРОЙСТВА СЕТЕЙ ЗАЗЕМЛЕНИЯ

МОСКВА

Энергосервис

2002

доктор технических наук, профессор Карякин Рудольф Николаевич

Нормы относятся к заземляющим устройствам электроустановок напряжением до 1 кВ и выше. Настоящее 3-е издание Норм, являясь технологическим дополнением главы 1.

7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок (ПУЭ), соответствует требованиям стандартов Международной Электротехнической Комиссии (МЭК): 60364-5-54-2001: Earthing arrangements protective conductors and equipotential bonding и 61024-1-2001: Protection of structures against fire, explosion and life hazards (Lightning Protection).

По сравнению с предыдущим 2-м изданием объем книги увеличен более чем вдвое за счет добавления новых нормативных материалов.

Книга адресована инженерам (электротехникам, электроэнергетикам, электромонтажникам, строителям), мастерам, бригадирам, техникам, рабочим-электромонтажникам, связанным с проектированием, монтажом, испытаниями, сертификацией, энергонадзором, ремонтом, реконструкцией и эксплуатацией электроустановок.

Предисловие к 3-му изданию

Настоящее 3-е издание Норм устройства сетей заземления задумано как технологическое продолжение главы 1.7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок (ПУЭ).

Именно поэтому Нормы предполагают их практическое применение одновременно с ПУЭ в едином процессе создания электроустановок и молниезащиты зданий и сооружений: проектирование – заказ оборудования и материалов – монтаж – пуско-наладочные и приемочные испытания – сертификация.

По сравнению с предыдущим 2-ым изданием объем книги увеличен более чем вдвое за счет добавления дополнительных нормативных требований к сетям заземления и молниезащиты, учитывающих новые стандарты Международной Электротехнической Комиссии (МЭК):60364-5-54-2001: Earthing arrangements protective conductors and equipotential bonding и 61024-1-2001: Protection of structures against fire, explosion and life hazards (Lightning Protection).

Автор выражает благодарность инж. А.С. Ермоленко за большую помощь при подготовке 3-ей редакции рукописи к печати.

Автор

Москва

29 октября 2001 г.

Из предисловия к 1-му изданию

В отличие от известных инструктивных материалов по устройству сетей заземления и молниезащите предлагаемые Нормы соответствуют Основномуправилуустройстваэлектроустановок (см. Главу 1, п. 1.1.) и комплексу стандартов ГОСТ Р 50571 (МЭК 364), согласно которому заземление или зануление открытых проводящих частей электроустановок следует выполнять:

1) при номинальном напряжении более 50 В переменного тока или более 120 В постоянного тока – во всех электроустановках;

2) при номинальных напряжениях выше 25 В переменного тока или выше 60 В постоянного тока – в помещениях с повышенной опасностью, особо опасных и в наружных электроустановках.

Для сравнения напомним, что согласно известным инструктивным материалам заземление или зануление электроустановок выполняют:

1) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех электроустановках;

2) при номинальных напряжениях выше 42 В переменного тока и выше 110 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и в наружных остановках.

Норма дополнены стандартными методиками расчета заземляющих и защитных проводников и современной классификацией систем заземления электроустановок напряжением до 1 кВ. Используемая в книге терминология в области устройства заземляющих сетей уточнена и дополнена в соответствии с комплексом стандартов ГОСТ Р 50571 (МЭК 364).

Автор считает своим приятным долгом выразить благодарность своим коллегам канд. техн. наук В.И. Солнцеву и инж. Л.К. Коноваловой за помощь при подготовке ряда параграфов.

Автор благодарит инж. А.С. Ермоленко за помощь при подготовке рукописи к печати.

Автор

Москва

1 сентября 1999 г.

ВВЕДЕНИЕ

Действующие в 2001 году Правила устройства электроустановок (ПУЭ – 6 изд.) достаточно четко регламентируют требования к защитным мерам в зависимости от значений номинальных напряжений. Согласно ПУЭ требуется выполнять заземление или зануление электроустановок:

1) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех электроустановках;

2) при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока -только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 42 В переменного тока и до 110 В постоянного тока во всех случаях, кроме взрывоопасных зон и электросварочных установок.

Рекомендации ПУЭ – 6 изд. не обеспечивают электробезопасность как в помещениях, так и на территориях размещения наружных электроустановок.

Для обеспечения электробезопасности согласно стандарту МЭК 364-4-41-1992 требуется выполнять заземление или зануление электроустановок:

1) при номинальном напряжении более 50 В переменного тока (действующее значение) или более 120 В постоянного (выпрямленного) тока – во всех электроустановках;

2) при номинальных напряжениях выше 25 В переменного тока (действующее значение) или выше 60 В выпрямленного тока – только в помещениях с повышенной опасностью, особо опасных и в наружных электроустановках.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 25 В переменного тока или до 60 В выпрямленного тока во всех случаях, кроме взрывоопасных зон и электросварочных установок.

ТаблицаB.1

Нормативный документТребованияПомещения
Без повышенной опасностис повышенной опасностьюособо опасные
ПУЭ – 6 изд.Требуется выполнять заземление или занулениеПри номинальном напряжении 380 В и выше переменного или 440 В и выше постоянного токаПри номинальном напряжении выше 42 В переменного или выше 110 В постоянного тока
Не требуется выполнять заземление или занулениеПри номинальном напряжении ниже 380 В переменного или ниже 440 В постоянного токаПри номинальном напряжении до 42 В переменного или до 110 В постоянного тока во всех случаях, кроме взрывоопасных зон и электросварочных установок
Рекомендации МЭК 364-4-41 (1992)Требуется выполнять заземление или занулениеПри номинальном напряжении более 50 В переменного или более 120 В постоянного токаПри номинальном напряжении выше 25 В переменного или выше 60 В выпрямленного тока
Не требуется выполнять заземление или занулениеПри номинальном напряжении 50 В и ниже переменного или 120 В и ниже постоянного токаПри номинальном напряжении до 25 В переменного или до 60 В выпрямленного тока во всех случаях, кроме взрывоопасных зон и электросварочных установок
Не требуется защита от прямого прикосновения с помощью ограждений или оболочек, или изоляции, если электрооборудование находится в зоне действия системы уравнивания потенциаловПри номинальном напряжении, не превышающем 25 В переменного или 60 В выпрямленного токаПри номинальном напряжении, не превышающем 6 В переменного или 15 В выпрямленного тока
Не требуется защита от прямого прикосновения к сторонним проводящим частям, которые могут оказаться под напряжениемПри напряжении, не превышающем 25 В переменного или 60 В выпрямленного токаПри напряжении, не превышающем 6 В переменного или 15 В выпрямленного тока

Защита от прямого прикосновения с помощью ограждений или оболочек, или изоляции не требуется, если электрооборудование находится в зоне действия системы уравнивания потенциалов и номинальное напряжение не превышает:

– 25 В переменного тока или 60 В выпрямленного тока при условии, что оборудование нормально эксплуатируется только в сухих помещениях и мала вероятность контакта человека с частями, могущими оказаться под напряжением;

– 6 В переменного тока или 15 В выпрямленного тока во всех остальных случаях.

Численные значения нормативов стандартов МЭК 364-4-41 (1992) и ПУЭ – 6 изд. даны в таблице.

Сравнение сопоставимых нормативов ПУЭ и стандартов МЭК позволяет сделать вывод о необходимости существенного ужесточения требований к защитным мерам. В частности, в помещениях без повышенной опасности согласно стандарту МЭК 364-4-41 -1992 требуется выполнять заземление или зануление при номинальном напряжении в 7,6 раз меньшем, чем установлено требованиями ПУЭ – 6 изд.

В разработанную и утвержденную в 2002 году новую редакцию главы 1.7. «Заземление и защитные меры электробезопасности» (ПУЭ – 7 изд.) внесены изменения, учитывающие рекомендации МЭК 364-4-41-1992.

Предлагаемые Нормы устройства сетей заземления удовлетворяют Основномуправилуустройстваэлектроустановок

Нормы сопротивление контура заземления пуэ

Сопротивление контура заземления нормы

База нормативной документации: www.complexdoc.ru

Сопротивление заземляющего устройства, к которому присоединены нейтрали обмоток генераторов и трансформаторов, при удельном сопротивлении грунта до 100 Ом·м не должно быть более 2 Ом для электроустановок напряжением 660/380 В, 4 Ом для электроустановок напряжением 380/220 В и 8 Ом — для электроустановок напряжением 220/127 В.

При удельном сопротивлении грунта более 100 Ом·м допускается повышать величину сопротивления заземляющего устройства, но не более, чем в 10 раз и не более указанных ниже значений.

Указанные величины сопротивлений должны быть обеспечены с учетом использования естественных заземлителей (проложенные под землей металлические трубы, металлические конструкции, арматура зданий и др., за исключением трубопроводов горючих и взрывоопасных смесей, канализации центрального отопления и бытового водопровода, расположенных вне здания предприятия связи).

20.9.Сопротивление рабочих или рабоче-защитныхзаземляющих устройств ЛАЦ и ОУП, питающих дистанционно НУП по схеме «провод — земля», определяется проектом. Эти сопротивления должны быть не более значений, указанных в п.20.8.

20.10.Сопротивление рабочего заземляющего устройства для НУП, питаемых дистанционно по схеме «провод — земля», должно быть не более 10 Ом для грунтов

судельным сопротивлением до 100 Ом·м и не более 30 Ом для грунтов с удельным сопротивлением более 100 Ом·м. При этом падение напряжения, создаваемое токами дистанционного питания на сопротивлении заземляющего устройства, должно быть не более 12 В для грунтов с удельным сопротивлением до 100 Ом·м и не более 36 В для грунтов с удельным сопротивлением более 100 Ом·м.

20.11.Сопротивление защитных заземляющих устройств промежуточных пунктов, не имеющих электропитающих установок, должно быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом·м и не более 30 Ом для грунтов

судельным сопротивлением более 100 Ом·м.

20.12.Сопротивления заземляющих устройств искровых разрядников, устанавливаемых на проводах воздушных линий связи для защиты подземных кабелей от ударов молнии, тросов и металлических оболочек кабелей, подвешенных на опорах воздушных линий, молниеотводов с вынесенными заземлителями, должны быть не более значений, указанных в табл. 20.3.

771

studfiles.net

Удельное сопротивление грунта

Определяет собой удельное сопротивление грунта уровень «электропроводности» земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — «удельное сопротивление грунта».

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

www.calc.ru

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным).

Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю.

Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления.

Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором.

Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность.

Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей.

Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей.

Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

samelectrik.ru

 Наша электролаборатория производит весь комплекс электротехнических измерений, результаты которых предоставляются в надзорные органы: Энергонадзор Ростехнадзор, пожарным инспекторам. Мы прошли государственную аккредитацию и имеем аттестат установленного образца.

Протоколы, выдаваемые нашей организацией, имеют силу юридического документа. Мы располагаем всеми необходимыми средствами измерения. Наши специалисты обладают необходимой квалификацией, владеют методиками электротехнических измерений.

Наша лаборатория всегда готова откликнуться на предложения сотрудничества.

Часто нам задают вопросы, каковы нормы контура заземления по ПУЭ, каковы нормы контура заземления по ПТЭЭП? Действительно многие вопросы, связанные с заземлением у значительной части электриков вызывают определенные трудности. Далеко не все, сдавая ежегодный экзамен, радуются, когда среди вопросов встречается вопрос, связанный с сетью заземления. Это касается как простых электромонтеров, так и инженеров электриков.

Как правило, в повседневной работе для большей части электротехнического персонала достаточно общих представлений о назначении заземления и правил присоединения частей электроустановок к сети заземления. Для энергетиков предприятий и организаций, лиц ответственных за электрохозяйство ситуация выглядит иначе.

При посещении предприятия представителями надзорных органов, энергетику необходимо предоставить им протоколы установленного образца. Такие протоколы может составить только аккредитованная электролаборатория.

Результаты измерений сопротивления заземляющих устройств должны соответствовать нормам, прописанным в ПУЭ и ПТЭЭП. Оба документа исчерпывающе регламентируют требования к заземляющим устройствам.

В дальнейшем мы будем рассматривать вопросы, связанные с электроустановками до 1000 В:

Что касается норм сопротивления контура заземления, то следует уяснить, что требования ПУЭ относятся к проектируемым, вновь возводимым и реконструируемым электроустановкам. Протоколы измерений в этом случае составляются один раз в процессе приёмосдаточных работ.

Сопротивление заземления: вычисление и нормы

Сопротивление контура заземления нормы

Сопротивление заземления — это важный показатель, требующийся для правильного монтажа заземляющего контура, который отвечает за безопасность электрических установок в домашних и производственных условиях. Этот показатель состоит из трех сопротивлений: грунта, заземляющих проводников и заземлителя.

В этой статье мы подробно рассмотрим процесс вычисления сопротивления, и будем выполнять это на примере приспособления М416.

Как просто измерить сопротивление контура заземления?

Все значения определяем уже по готовому контуру, для этого пользуемся алгоритмом действий:

  • подсоединяем дополнительные электроды к существующему контуру заземления, после чего подключаем заземляющее устройство к прибору, согласно схемы, которая указана на корпусе приспособления;
  • при непосредственном измерении, М416 должен быть расположен строго горизонтально, так как даже малейший уклон влияет на погрешность измерений;
  • выполните действия с прибором: ручку переключателя поверните на значение х1; нажимая на кнопку, вращаем «реохорд» и добиваемся максимального приближения стрелки циферблата к нулевому значению; обратите внимание на шкалу, на ней появится результат значения сопротивления; при этом умножайте эти цифры на значение, на котором установлен переключатель (в нашем случае х1).

    Схема определения сопротивления заземления

Важно! Если в ходе вычислений сопротивления у вас получилось значение больше 10 Ом, необходимо провести замеры снова, в соответствии с предложенным алгоритмом, к тому же переключатель переместить на следующее положение.

Общие понятия сопротивления заземления

Сразу обращаем внимание, сооруженное заземление должно иметь минимальное сопротивление. Идеально, если вычисленный показатель равен нейтральному значению, тогда можно говорить о полноценном поглощении грунтом электрического пробойного тока.

В частных домах или на дачных участках, подключенных к системе электроснабжения мощностью 220 Вольт, оптимальное значение сопротивления составляет до 30 Ом. В случаях, когда контур заземления напрямую соединяется с нулем трансформатора — сопротивление должно быть не более 4 Ом.

Обратите внимание! Только грамотное сооружение заземлительной конструкции послужит достижением правильного параметра сопротивления.

Если к вашему дому подведен газопровод, требуется установить локальное заземление, сопротивление которого согласно нормам и ПУЭ должно составлять не более 10 Ом.

Нормы сопротивления контура заземления, можно узнать в соответствующей документации в зависимости от почвенных и других условий.

Измеритель сопротивления заземления

Нормы сопротивления заземлителя в определенных условиях

Разумеется, одинаковых механических воздействий и условий не существует нигде, поэтому имеются приведенные законные требования к сопротивлению, которые мы с вами сейчас рассмотрим:

  • если измерять сопротивление заземления в районе находящейся трансформаторной станции, то оптимальными значениями сопротивления, являются: 15, 30 либо 60 Ом;
  • при измерении повторно установленных заземлителей, сопротивление не должно превышать 2, 4 или 8 Ом;

Эти значения характерны для подсоединения к подстанции мощностью, не достигающей 1000 Ом.

Если у вас контур заземления подсоединён к трансформатору мощностью более 1000 Вольт:

  • в глухозаземленных условиях и правильно подключенном занулении при вычислении сопротивлений должно получится значение не более 0,5 Ом;
  • если измерить сопротивление в электрической установке потреблением 110 кВ, величина его должна составить 0,5 Ом.

Подчеркнем, что показатель сопротивления и его величина непосредственно влияют на безопасность человека. Весьма опасной считается ситуация, когда происходит, обрыв нейтрали. Как правило, такое случается в любом месте электрической цепи, при этом ни обустроенные УЗО, ни автоматические выключатели не срабатывают.

Схема замеров сопротивления заземления

Внимание! Если на момент обрыва нулевого проводника включен фазный потребитель, возникает высокое напряжение, опасное при прикосновении к потребителю человека.

Определить величину опасного напряжения, можно по показателю мощности однофазного потребителя, в нашем случае лампочки. Если ее потребность составляет 3 кВт, тогда напряжение будет 131 В, оно остается опасным, при условии, что не наносит вреда напряжение 50 В и ниже.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.