Реактивная мощность для чайников
Что такое реактивная мощность простым языком
Прежде чем говорить о том, что собой представляет реактивная мощность различного рода приборов, необходимо дать определение электрической мощности. Итак, под электрической мощностью необходимо понимать величину, характеризующую быстроту передачи тока за конкретный временной отрезок, скорость его генерации.
Чем выше будет уровень мощности, тем больший объем работы конкретный прибор сможет выполнять за конкретный временной отрезок. Мощность, перешедшую в нагрузку, в физике принято называть активной.
Мощность, не перешедшую в нагрузку прибора, принято называть реактивной. Выражаясь простым языком, реактивная мощность представляет собой величину, характеризующую степень нагрузки на конкретный электрический прибор.
Наверняка вы, идя по улице, неоднократно замечали, что стекла некоторых балконов покрыты очень тонким слоем пленки, которая блестит. Так вот, делается она из конденсаторов, которые и потребляют больше всего реактивной мощности.
Их главной особенностью является способность сначала накапливать энергию, а после ее отдавать. То есть конденсатор, по сути, представляет собой аккумулятор. Если его подключить к сети, ток в которой постоянен, он зарядится кратковременным импульсом. После чего электричество через него проходить уже не будет.
Конденсатор впоследствии можно будет вернуть в изначальное состояние путем отключения его от сети, подав нагрузку на его обкладки. Некоторый период времени нагрузка будет проводить электричество.
В идеале конденсатор должен отдавать в нагрузку ровно такое количество тока, которое он получает при зарядке. Если к конденсатору подсоединить лампу накаливания, то она вспыхнет на какое-то время. Резистор в этом случае сразу же нагреется, а неосторожного человека, что называется “долбанет”. Причем, даже возможно, что насмерть.Вообще, очень интересно получается, когда конденсатор подключается к источнику тока, который является переменным. В этом случае конденсатор беспрерывно заряжается и разряжается. И через него будет постоянно проходить электрический ток. Но он не будет совпадать с напряжением.
Как протекает процесс
В тех цепях, где ток постоянен, значение средней и мгновенной мощностей, могут иногда быть одинаковыми. В цепях же с током, являющимся непостоянным, их совпадение возможно исключительно если нагрузка активная. Пример – лампочка или же обогреватель.
Если же нагрузка является индуктивной, как, к примеру, в случае с трансформаторами или же двигателями, то ток по фазе напряжения будет отставать. Если же емкостная, то наоборот опережать.
Как можно компенсировать реактивную мощность приборов
Исходя из всего вышеизложенного, можно сделать вывод о том, что если нагрузка на прибор обладает индуктивным характером, то компенсирована она может быть при помощи специальных емкостей, которые называются конденсаторами.
Соответственно, так нагрузка на электрический прибор, которую создают емкости, может быть компенсирована с помощью различного рода индуктивностей. В частности, при помощи реакторов, а также при помощи дросселей.
Эффект экономии, которым обладает компенсация реактивной энергии
Эффект экономии, которым обладает компенсация реактивной энергии, может быть достаточно большим. В соответствии со статистическими данными, он составляет от двенадцати процентов до пятидесяти процентов от оплаты за электричество в подавляющем большинстве регионов Российской Федерации.
Установка различного рода устройств, которые предназначаются для компенсации реактивной энергии, окупается менее чем за двенадцать месяцев.
Что же касается различного рода проектируемых объектов, то для них внедрение различного рода устройств, которые предназначаются для компенсации электрической энергии, еще на этапе разработки предоставляет возможность существенным образом сэкономить на кабельных линиях за счет сокращения их сечения.
Итоги
Установка различного рода устройств, которые предназначаются для компенсации реактивной энергии, может принести достаточно большую выгоду. Также, это позволяет сохранить различного рода оборудование в исправном состоянии.
К основным причинам, по которым так происходит, можно отнести следующее:
- Существенное сокращение уровня нагрузки на кабель
- Наличие возможности использовать кабели, которые обладают меньшим сечением
- Существенное улучшение уровня качества энергии, которая подается на ее приемники
- Существенное сокращение количества потребляемого электричества.
Реактивная мощность
Электрическая мощность — это сейчас для нас все. Мы живем на электричестве, мы его пьем, едим, им греемся, на нем ездим. Через него смотрим на целый мир, им общаемся, и уж как-то им начинаем и думать. Но мощность электрическая имеет некоторое лукавое измерение, с помощью которого способна от нас утекать.
Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.
Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.
Мощность активная, реактивная и полная
Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось.
Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу.
Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте — на оси.
Почему у нас в сети напряжение переменное
И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии.
А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией — синусоидой.
Синусоида есть проекция вращения по кругу на одну из геометрических осей. Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны.
И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой — косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.
Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.
Синусоида
угол поворота здесь разбит не на 360 градусов, а на 24 деления. То есть одно деление соответствует 15°
6 делений = 90°
Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.
Выгода от переменного напряжения — выгода системы
А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном — тогда он станет генератором постоянного тока), либо когда-нибудь потом.
Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором — повышать или понижать. Это оказалось вторым удобством переменного напряжения.
А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.
Убытки от переменного напряжения
И вот мы пользуемся сетью переменного напряжения.
А в ней присутствует «плата за забывчивость» — реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление — это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.
Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи.
Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение.
Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество.
Даже вода в бачке унитаза, и та участвует во всеобщем веселье — в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.
Получается, наша пространственная система прохождения тока у нас в квартире работает как большой трансформатор, и уходящая «в стены» энергия как раз и характеризуется реактивной частью этой мощности (индуктивная составляющая).
А еще «мегасеть» работает и как большой конденсатор — вспомним электростатическую составляющую, — при этом статические заряды, наводимые во всем окружающем, заставляют заряды нашей электрической сети (а ток — это движение зарядов) реагировать на наведенные заряды вокруг — паразитную емкость.
Это уже емкостная составляющая. «Конструкция» этой самой, охватившей нас со всех сторон паразитной невидимой сети просто неописуема. Мы же сами в ней участвуем — в наших телах и заряды накапливаются, и токи наводятся.Следовательно, вся эта паразитная реактивная нагрузка, ее сопротивление, мощность не могут поддаваться никакому расчету. Но вот мощность измеряется. А именно, как соотношение полезной мощности и полной.
Рассчитать или измерить мощность: полную, активную и реактивную
Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.
Треугольник мощностей в цепи переменного тока
S – полная мощность, расходуемая нашей сетью, P – активная мощность, она же полезная активная нагрузка,
Q – мощность реактивная.
Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.
Полная мощность
S = U x I = Ua x If
А вот мощность паразитную, реактивную можно получить из данного треугольника по теореме Пифагора.
Q (реактивная мощность) тем больше, чем больше угол j в треугольнике мощностей
То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть — много энергии уходит в потери.
Что такое активная, реактивная и полная мощности
Угол j можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.
Диаграмма тока и напряжения в сети переменного тока
Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.
Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:Формула
Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.
Часто используется другое отношение, связывающее активную мощность и реактивную:
Еще формула
Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.
Диаграммы тока
Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.
Что такое реактивная мощность
Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность — это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении — просто разрыв в цепи.
И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.
В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.
Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.
Индуктивная и емкостная составляющие сопротивления сети
Таким образом, реактивные элементы имеют свои разновидности сопротивления — емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:
Z = R + jX
Z – полное сопротивление,
R – активное сопротивление,
X – реактивное сопротивление.
В свою очередь, реактивное сопротивление состоит из двух частей:
X = XL – XC
XL – индуктивной и XC – емкостной.
Отсюда мы видим, что вклад в реактивную составляющую у них разный.
Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.
На этом и строится возможность уменьшения паразитного, реактивного сопротивления.
Электроприборы, влияющие на качество потребления
Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было.
Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле — вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо — сколько потребил, за столько и заплатил.
Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.
Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.
Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования.
Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.
Компенсатор реактивной мощности Еще один КРМ Один из видов КРМ Есть и такие КРМ
Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.
Реактивная мощность на ощупь, простым языком, без графиков
Сегодня я постараюсь объяснить простым языком, что же такое реактивная мощность электрической энергии.
Активная мощность
Для начала, расскажу про наиболее привычную нам активную мощность, за которую мы, собственно, и платим по счётчику. Эта мощность, потребляемая нагрузкой типа обычного сопротивления.
Как правило, это все нагревательные приборы (бойлеры, обычные электроплитки, электро калориферы и т.п.). Потребляемая мощность этих приборов полностью активная.
В этих приборах электрическая энергия безвозвратно и полностью преобразуется в другой вид энергии (тепловую и другие).
Активная мощность обозначается буквой P и измеряется в ваттах (Вт).
Величина активной мощности, потребляемой такими приборами считается просто — умножением напряжения в розетке на ток, протекающей в цепи включенного нагревательного прибора:P = U * I
Тут всё просто. Нагрузка пассивна, постоянна, никаких неожиданностей.
Замечу, что в цепях постоянного тока существует только активная мощность, поскольку значение мгновенной и средней мощности там совпадают.
Реактивная мощность
Если включить в сеть переменного тока не нагревательный прибор, а, например, электромагнит, то помимо активной, в цепи возникает реактивная энергия, которая с частотой переменного тока то потребляется прибором, то возвращается обратно в сеть. Эта энергия переносится от источника к электромагниту и обратно дважды за период, каждую четверть периода меняя направление.
Это происходит из-за того, что при потреблении электроэнергии, например, обмоткой магнита, каждый полупериод в нём происходит временное запасание энергии в магнитном поле катушки, и последующая отдача её назад, из-за чего происходит рассинхронизация синусоид величин напряжения и тока в сети.
Изменения тока в цепи отстаёт от соответствующих синусоидальных изменений напряжения. Такое поведение присуще любой т.н. индуктивной нагрузке (трансформаторы, электродвигатели, дроссели, электромагниты).
Помимо индуктивной нагрузки существует емкостная (различные электронные устройства с конденсаторами, как накопителями энергии, например, в импульсном блоке питания), в которой ток, наоборот, опережает напряжение за счёт временного накопления энергии конденсаторами и последующей отдачи её назад. И в том и в другом случае в цепи помимо активной возникает реактивная энергия.
Вред реактивной энергии в электроэнергетике очевиден — она никак не используется, но шляется туда-сюда по проводам, дополнительно нагружая их. Кроме того, при таком «шлянии» эта энергия ещё и частично теряется, преобразуясь в активную энергию при нагреве проводов. Однако в радиотехнике реактивная мощность может быть и полезной (например, в колебательных контурах).
Реактивная мощность обозначается буквой Q и измеряется в вольт-амперах реактивных (вар).
Для вычисления доли реактивной мощности применяется формула:
Q = U * I * sin φ, где:
sin φ — коэффициент мощности, показывающий, какую долю полной мощности составляет реактивная мощность.
Для вычисления активной мощности в сетях с реактивной составляющей применяется формула:
P = U * I * cos φ, где:
cos φ — коэффициент мощности, показывающий, какую долю полной мощности составляет активная мощность.
Коэффициенты мощностей разных приборов обычно указываются в паспортах на них.
Неактивная мощность
Неактивная мощность (пассивная мощность) — это вся мощность кроме активной, т.е. как реактивная мощность, так и мощность любых нелинейных искажений синусоиды, в том числе и мощность колебаний в колебаниях (высших гармоник).
Неактивная мощность обозначается буквой N и измеряется в вольт-амперах реактивных (вар).
Нелинейные искажения могут быть вызваны такой нелинейной нагрузкой, как, например, импульсные блоки питания без корректора коэффициента мощности.
Полная мощность
Полная мощность — эта вся мощность, и активная и неактивная.
Полная мощность обозначается буквой S и измеряется в вольт-амперах (ВА).
Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощности:
S = √(P² + N²)
В случае линейной (равномерной на протяжении периода) нагрузки полная мощность равна корню квадратному из суммы квадратов активной и реактивной мощности. В этом случае неактивная мощность полностью состоит из реактивной составляющей.
S = √(P² + Q²)
То есть, полная мощность получается не лобовым сложением активной и неактивной частей, а по закону прямоугольного треугольника:
Надеюсь, я немного прояснил данный вопрос.Если тема всё ещё непонятна, почитайте мою новую статью, где я более тщательно расписал физику процесса.
Ставьте лайки, если статья понравилось. Пишите комментарии.Делитесь также этой статьёй в социальных сетях (соответствующие кнопочки рядом со статьёй в наличии) и, конечно, подписывайтесь на мой канал! Жду ваших отзывов! Удачи!
Что такое активная, реактивная и полная мощность — простое объяснение
В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют простое выражение P=U*I. Но с переменным током дело обстоит иначе. В этой статье мы рассмотрим, что такое активная, реактивная и полная мощность электрической цепи.
Определение
Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:
P=U*I
P=I2*R
P=U2/R
По этой же формуле определяется полная мощность в цепи переменного тока.
Нагрузку разделяют на два основных типа:
- Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
- Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).
Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.
Смысл реактивной нагрузки
В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости).
Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока).
Давайте рассмотрим каждый из них.
В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».
В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.
В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.
Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.
Для измерения активной, реактивной и полной мощности, активной и реактивной энергии в прямом и обратном направлениях, а также других важных параметров сети могут использоваться многофукциональные измерительные приборы от компании EKF.Они достаточно легко монтируются и обслуживаются, к тому же могут настраиваться под любой трансформатор тока. Сам прибор дает возможность управления, анализа и оптимизации работы энергетического оборудования, систем и промышленных цепей.
Подробнее о данном измерителе вы можете узнать, перейдя по ссылке: https://ekfgroup.com/catalog/pribory-izmeritelnye/mnogofunkcionalnye-izmeriteli.
Треугольник мощностей и косинус Фи
Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.
Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:
Буквой P – обозначена активная мощность, Q – реактивная, S – полная.
Формула полной мощности имеет вид:
Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.
Единицы измерения:
- P – Вт, кВт (Ватты);
- Q – ВАр, кВАр (Вольт-амперы реактивные);
- S – ВА (Вольт-амперы);
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
P=S*cosФ
Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:
cosФ=P/S
В свою очередь реактивная мощность рассчитывается по формуле:
Q = U*I*sinФ
Для закрепления информации, ознакомьтесь с видео лекцией:
Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.
Ответы на популярные вопросы
Полная, активная и реактивная мощности являются важной темой в электричестве для любого электрика. В качестве заключения мы сделали подборку из 4 часто задаваемых вопросов на этот счёт.
- Какую работу выполняет реактивная мощность?
Ответ: полезной работы не выполняет, но нагрузкой на линии является полная мощность, в том числе с учетом реактивной составляющей. Поэтому чтобы снизить общую нагрузку с ней борются или говоря грамотным языком компенсируют.
— В этих целях используют установки для компенсации реактива. Это могут быть конденсаторные установки или синхронные компенсаторы (синхронные электродвигатели). Подробнее мы рассматривали этот вопрос в статье: https://samelectrik.ru/kompensaciya-reaktivnoj-moshhnosti.html
- Из-за каких потребителей возникает реактив?
— Это в первую очередь электродвигатели – самый многочисленный вид электрооборудования на предприятиях.
- Чем вредит большое потребление реактивной энергии?
— Кроме нагрузки на линии электропередач следует учитывать, что предприятия оплачивает полную мощность, а физические лица – только активную. Это приводит к повышенной сумме оплаты за электроэнергию.
На видео предоставлено простое объяснение понятий реактивной, активной и полной мощностей:
На этом мы и заканчиваем рассмотрение данного вопроса. Надеемся, теперь вам стало понятно, что такое активная, реактивная и полная мощность, какие между ними отличия и как определяется каждая величина.
Материалы по теме:
Активная и реактивная мощность. За что платим и работа
Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять.
Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной.
Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).
Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.
В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков.
Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии.Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.
Активная мощность
Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.
Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность .
Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети.
Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).
Реактивная мощность
Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности.
В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).
Реактивная емкостная мощность
Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор.
Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку.
Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке.
Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.
Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения.
Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному).
Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.
Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности
Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр).
Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А.
Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.
Реактивная индуктивная мощность
Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.
На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.
Реальные потребители электрической энергии и полная электрическая мощность
Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно.
Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации.
Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи.
Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники.
Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности.
Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.
Таинственный «косинус фи»
Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.
В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.
За что платим?
И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем.
Но бес, как известно, кроется в деталях.
Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».
Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.
Потребитель находит возможность платить меньше
Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.
Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.
Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается
Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято.
Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е.
в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.
Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку.
За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.
Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.
Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.