Расчет мощности калорифера вентиляции

Как выбрать калорифер для приточной вентиляции?

Расчет мощности калорифера вентиляции

Подаваемый в здания воздух должен соответствовать заданным характеристикам. Для этого воздух проходит обработку такими способами, как фильтрование, нагрев, охлаждение, увеличение содержания влаги. Нагревание воздуха обеспечивает калорифер для приточной вентиляции. Для получения воздушного потока заданного температурного режима, необходимо сделать расчет и подбор калорифера.

Типы калориферов

Теплообменники выпускаются в разнообразных модификациях и для различных типов теплоносителей. Теплоносителями чаще выступают пар или вода. Также распространены электрокалориферы.

Водяные калориферы

Калориферы на горячей воде используются в приточных вентиляционных системах круглого или прямоугольного сечения и монтируются в вентиляционных каналах. Водяные калориферы могут быть двух- или трехрядными. Воздух, проходящий через водяной теплообменник, не должен включать твердые, волокнистые или клейкие вещества.

Водяной калорифер для приточной вентиляции

Паровые калориферы

По сравнению с водяными, паровые устройства используется нечасто, — обычно на промышленных предприятиях, где есть производство пара для технологических потребностей.

Паровой калорифер для приточной вентиляции

Обратите внимание! Иногда случается масштабное потребление воздуха приточной вентиляцией, и при этом установка теплообменника со значительным проходным сечением не представляется возможной. В таких случаях производится установка целой серии устройств меньшего размера.

Расчет мощности калорифера

Для проведения расчета необходимы такие данные:

  1. Объем или масса приточного воздуха, подлежащего нагреву. Вычислять может объемный расход (куб. м/ч) или массовый расход (кг/ч).
  2. Изначальная температура воздуха, которая равна температуре воздуха на улице.
  3. Целевая температура, до которой необходимо разогреть приточный воздух, прежде чем подавать его в помещения.
  4. Температурный режим теплоносителя, который применяется для нагрева воздуха.

Инструкция для расчета

При расчете калорифера, используемого для приточной вентиляции необходимо вычислить площадь поверхности подогрева и необходимую мощность. Начинать нужно с вычисления площади сечения теплообменника по фронту:

Аф = Lρ / 3600 (ϑρ), здесь:

  • L – расход приточного воздуха по объему, м³/ч;
  • ρ – значение плотности наружного воздуха, кг/м³;
  • ϑρ – массовая скорость воздушных масс в расчетном сечении, кг/(с м²).

Расчет мощности калорифера

Показатель фронтального сечения необходим для осведомленности о размере теплообменника. Далее нужно использовать для расчета ближайшее большее по размеру устройство. Если по расчетам вышла слишком значительная площадь сечения, понадобится остановить выбор на нескольких параллельно монтируемых калориферах, чтобы получить необходимую площадь.

Показатель реальной массовой скорости нужно вычислять, учитывая реальную площадь по фронту выбранных калориферов:

ϑρ = Lρ / 3600 Аф.факт

Далее, необходимое количество теплоты для нагревания воздушного потока рассчитывают по формуле:

Q = 0.278Gc (tп – tн), где:

  • Q – количество теплоты, Вт;
  • G – массовый расход нагреваемого воздуха, кг/ч;
  • с – величина удельной теплоемкости воздушной смеси, принимается равной 1.005 кДж/кг °С;
  • tп – температура притока, °С;
  • tн – начальная температура воздуха с улицы.

Так как установка вентилятора в приточной вентиляции производится до теплообменника, массовый расход G вычисляется, принимая во внимание плотность воздуха на улице.

G = Lρн

В обратном случае плотность определяется по температуре воздуха после его подогрева. Вычисленное количество тепла позволяет сделать расчет затрат теплоносителя в калорифере (кг/ч) для отдачи этой теплоты пропускаемому воздуху:

Gw = Q / cw (tг – t0)

В данной формуле:

  • cw – значение теплоемкости для воды, кДж/кг °С;
  • tг – расчетная температура воды в подающем трубопроводе, °С;
  • t0 – расчетная температура воды в обратном трубопроводе, °С.

Удельный величина теплоемкости воды — справочный показатель. Температурные характеристики теплоносителя, используемые для расчетов, берутся исходя из реальных показателей в существующих условиях.

Если имеется котельная или подключение к центральной тепловой сети, для расчета понадобятся характеристики их теплоносителей.

Имея информацию о расходе теплоносителя, можно рассчитать скорость (м/с) его передвижения по трубам калорифера:

w = Gw / 3600 ρwAmp, здесь:

  • Amp – площадь поперечного сечения трубок теплообменника, м²;
  • ρw – плотность воды при средней температуре теплоносителя в калорифере, °С.

Расчет средней температуры воды, циркулирующей через калорифер, проводится по формуле:

(tг + t0) / 2

Скорость, подсчитанная по указанной выше формуле, будет справедлива для комплекта последовательно подключенных теплообменников. Если же произведена параллельная обвязка, произойдет увеличение площади сечения труб более чем вдвое.

В свою очередь, это станет причиной уменьшения скорости перемещения теплоносителя. Подобное уменьшение не принесет увеличение производительности, но станет причиной снижения температуры в возвратном трубопроводе.

Чтобы не столкнуться с чрезмерным ростом гидравлического сопротивления теплообменника, не нужно принимать скорость перемещения теплоносителя более чем 0,2 м/с.

Вычисление поверхности нагрева

Коэффициент отдачи тепла для нагревателя поверхностей определяют по справочникам для вычисленных показателей скорости движения теплоносителя и массовой скорости притока воздуха. Далее определяется площадь поверхности подогрева (кв. м) теплообменника, используя формулу:

Amp = 1.2Q / K (tср.т – tср.в), где:

  • К – коэффициент передачи тепла калорифером, Вт/(м°С);
  • tср.т – значение средней температуры теплоносителя, °С;
  • tср.в – значение средней температуры приточного воздуха для вентиляции, °С;
  • число 1,2 – необходимый коэффициент запаса, учитывает дальнейшее остывание воздушных масс в воздухопроводах.

Средняя температура воздуха вычисляется по формуле:

(tп + tн) / 2

В указанном варианте, если для прогрева воздуха не хватает нагревательной поверхности одного теплообменника, число калориферов одного вида необходимо рассчитать так:

Nmp = Amp / Ak, тут Ak

Итоговый результат — это значение, полученное с использованием формулы, округленное в большую сторону.

Далее вычисляется фактическая тепловая производительность калориферов.

Qфакт = К (tср.т – tср.в) Nфакт Ak.

здесь Nфакт принимается с округленным значением Nmp, остальные параметры – как в предыдущих формулах.

Потребуется учесть дополнительный запас мощности теплообменника — 12-15%. Такому подходу есть объяснения:

  • истинные показатели коэффициента передачи тепловой энергии калорифера практически никогда не совпадают с данными в таблицах, причем чаще в сторону снижения;
  • производительность устройства уменьшается с увеличением срока эксплуатации оборудования и образования засоров труб.

Однако не желательно превосходить запас мощности, поскольку существенное расширение нагреваемой поверхности приводит к их избыточному охлаждению, а во время низких температур воздуха — к размораживанию. Некоторые производители дают гарантию на точность указанных параметров.

В таком случае запас мощности можно установить в пределах 5%. Чтобы не столкнуться с размораживанием, скорость перемещения теплоносителя должна устанавливаться на уровне — 0,12 м/с. Обвязка теплообменника может включать циркуляционную насосную систему, поддерживающую баланс производительности.

Отдельные модели теплообменников выпускаются с вмонтированным обводным клапаном, защищающим от размораживания.

Особенности расчета для паровых калориферов

Если теплоноситель — это пар, выбор и расчет калорифера осуществляется таким же способом, но расход теплоносителя при разогреве воздуха вычисляется следующим образом:

G = Q / r.

В этой формуле параметр r (кДж/кг) – удельная теплота, выделяемая при конденсации водяного пара. Скорость движения водяного пара в трубках калорифера не рассчитывается.

Методы обвязки

Узел обвязки — это специальный арматурный каркас для регулировки поступления горячей воды. Обвязка проводится одним из двух методов:

  • двухходовые вентилями — сети, где не контролируется обратный расход воды;
  • трехходовые вентили — при использовании бойлера или котельной.

Узел обвязки калорифера

Монтаж узла обвязки необходим, так как дает возможность держать под контролем производительность калорифера и защищает его от промерзания.

Выбор электрического калорифера

Если решено применять в приточной вентиляционной системе электокалорифер, то выбор устройства осуществляется по требуемому расходу воздуха, а также его температурах на входе и выходе. Если производитель электрокалорифера прописывает в документации расход потребляемого воздуха и электрическую мощность — выбор оборудования прост.

Однако здесь необходимо поддерживать минимально разрешенный заводом объем воздушного притока. Игнорирование этого требования приводит к поломке нагревательных элементов электрокалорифера. Если предполагаемое приобретение предусматривает такой эксплуатационный режим, нужно использовать ступенчатое регулирование нагревательных элементов.

Размер запаса мощности для электрокалорифера — до 10%.

Для помещений небольшой площади лучше остановить выбор на электрических калориферах, поскольку они не сложны в эксплуатации и просты в монтаже. Для зданий большой площади лучшим выбором будет установка водяных калориферов, так как в сравнении с электрокалориферами они более экономичны.

Как выполняется расчёт мощности калорифера вентиляции – ВентиСам

Расчет мощности калорифера вентиляции

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Подбор мощности невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера.

Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик.

Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Определение

Калорифер (более профессиональное название «канальный нагреватель») — универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные — энергия передаётся через трубы с горячей водой, паром.
  2. Электрические — тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Электрический калорифер

Основа — нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата — инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Основа водяного калорифера — нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода — снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику), насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

  • Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
  • Температуры приточки. Берётся минимальное значение для зимнего периода.
  • Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
  • Максимальной температуре, до которой может нагреться тепловой носитель.

Правила вычислений

Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый — площадь поперечного сечения тепловой установки; второй — мощность, необходимая для нагрева поверхности заданного размера.

Площадь вычисляется по формуле:

Aф = Lp / 3600×(ϑρ), где

L — максимальное значение приточки для поддержки параметров вытяжки, м3/ч; Р — нормативная плотность воздуха, кг/м3; Θρ — скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.

Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.

Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:

ϑρ = Lρ / 3600×Аф.факт

На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:

Q = 0.278×Gc× (tп — tн), где

Q — объём тепловой энергии, Вт; G — расчётный показатель расхода воздуха, кг/ч; с — удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С; tп — температура приточки, °С; tн — температура воздуха на входе.

Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.

Далее вычисляются затраты горячей воды на отдачу тепла холодному:

Gw = Q / cw×(tг — t0), где

cw — тепловая ёмкость воды, кДж/кг °С; tг — температура теплоносителя (воды),0С; t0 — расчётная температура воды в обратном трубопроводе,0С.

Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.

Зная Gw, можно вычислить скорость движения воды по трубам:

w = Gw / 3600×ρw×Aф, где

Aф — размер сечения теплообменника, м²; ρw — плотность воды при средней температуре теплового носителя, 0С.

Средняя температура:

(tг + t0) / 2

Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.

Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:

Qзд=q×V× (tп-tн), где

q — тепловая характеристика объекта, Вт/(м3ּоС); V — объём объекта по внешней стороне ограждающих конструкций, м3; (tп-tн) — разность температуры основных помещений, оС.

Расчёт поверхности нагрева

Основная формула площади нагревательной поверхности канального устройства:

Amp = 1.2Q / K× (tср.т — tср.в), где

К — коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С); tср.т — средний показатель температуры теплового носителя, 0С; tср.в — средний показатель температуры приточки, 0С; число 1,2 — коэффициент запас. Вводится в связи с остыванием воздуховодов.

На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:

Qфакт = К× (tср.т — tср.в)×Nфакт×Ak

Особенность методики для паровых нагревателей

Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:

G = Q / r, где

r — тепловая энергия, получаемая в процессе конденсации пара.

Обвязка

Калорифер в системе вентилирования обвязывается двумя способами:

  1. Двухходовыми вентилями.
  2. Трёхходовыми вентилями.

Более подробно о специфике в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Подбор электрического калорифера

Для установки электрокалорифера не требуется специальный расчёт расхода тепла на работу вентиляции, но необходимо знать два параметра:

  1. Расход воздуха.
  2. Температуру на выходе из системы прогрева.

Производители указывают их в техническом паспорте на устройство.

Система рекуперации

Прямой нагрев воздуха за счёт только энергии нагревательных элементов — это не самый экономичный и практичный вариант устройства отопления вентсистемы. Система рекуперации за счёт замкнутого цикла работы значительно снижает теплопотери. Её работа основана на теплоизбытках, а точнее — энергии отработанных воздушных масс.

Общая схема устройства выглядит так: приточка и вытяжка проходят через один блок, и тепловыделения от исходящих воздушных потоков частично передаются входящим. За счёт использования теплопритоков снижается нагрузка на остальные системы отопления.

Монтаж системы отопления с рекуперацией стоит дороже, чем аналогичный, но без неё. Затраты быстро окупаются в регионах, где отопление подвергается значительной тепловой нагрузке ввиду продолжительной зимы.

Подведем итоги

За помощью в подборе и расчёте канального нагревателя лучше обратиться в специализированную организацию.

Компания «Мега.ру» оказываете комплексные услуги в сфере проектирования вентиляции и других инженерных систем. Грамотные инженеры ответят на любые вопросы по телефонам, указанным на странице «Контакты». Компания работает в Москве и соседних регионах, так же практикуется удалённое выполнение заказов на всей территории РФ.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.