Принцип работы устройства плавного пуска электродвигателя

Пример применения системы плавного пуска электродвигателя. – блог СамЭлектрик.ру

Принцип работы устройства плавного пуска электродвигателя

Устройство плавного пуска ABB PSR-25-600

Всем привет! Сегодня будет статья, в которой показан реальный пример использования устройства плавного пуска (мягкого пускателя) на практике. Плавный пуск электродвигателя установлен мною на реальном устройстве, приводятся фото и схемы.

Что это за устройство, я ранее подробно рассказывал в статье про мягкий пускатель. Напоминаю, что мягкий пускатель и устройство плавного пуска суть одно и то же устройство.

Названия эти берутся от английского Soft Starter. В статье я буду называть этот блок и так, и эдак, привыкайте). Информации по устройствам плавного пуска в интернете достаточно, рекомендую также почитать здесь.

Моё мнение по пуску асинхронных двигателей, подтвержденное многолетними наблюдениями и практикой. При мощности двигателя более 4 кВт стоит подумать, чтобы обеспечить плавный разгон двигателя. Это нужно при тяжелой, инерционной нагрузке, которая как раз и подключается на вал такого двигателя. Если двигатель используется с редуктором, то ситуация полегче.

Простейший и самый дешевый вариант плавного пуска – вариант с включением двигателя через схему “Звезда-Треугольник”. Более “плавные” и гибкие варианты – устройство плавного пуска и преобразователь частоты (в народе – “частотник”). Есть ещё древний способ, который уже почти не применяется – двухскоростные двигатели.

Кстати, верный признак того, что двигатель питается через частотник – хорошо слышимый писк с частотой около 8 кГц, особенно на низких оборотах.

Я уже использовал устройство плавного пуска от Schneider Electric, был такой положительный опыт в моей деятельности. Тогда нужно было плавно включать/выключать длинный круговой конвейер с заготовками (двигатель 2,2 кВт с редуктором). Жаль, что фотоаппарата тогда не было под рукой. Но в этот раз всё рассмотрим очень детально!

Зачем понадобился плавный пуск двигателя

Итак, проблема — на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.

Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт включаются через обычные контакторы (магнитными пускателями). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.

Блог СамЭлектрик.ру в соцсетях:

Подписывайтесь! Будет интересно.

Кроме того, когда котёл остывший, и в него резко подается горячая вода (более 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление. Бывает и наоборот, воду с температурой 100 °С можно холодной – когда в котле находится сухой пар с температурой почти 200 °С. В этом случае тоже происходят вредные гидроудары.

Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.

Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…

Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:

В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.

Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.

Мои постоянные читатели знают, что теперь, после сдачи экзаменов в Ростехнадзоре, я имею полное право выполнять работы по КИПиА в котельной.

 Выбор устройства плавного пуска

Для начала посмотрим на шильдик двигателя:

Двигатель насоса, который подключается к схеме плавного пуска

Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.

Вот как выглядела система пуска (“жёсткая”):

Система прямого пуска двигателей насосов

Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.

В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.

Вот наклейка на софтстартере с параметрами:

А что там свежего в группе вк самэлектрик.ру?

Soft Starter ABB PSR-25-600 – параметры

  • FLA – Full Load Amps – значение силы тока при полной нагрузке – почти 25А,
  • Uc – рабочее напряжение,
  • Us – напряжение цепи управления.

Примерил для начала:

Пробная установка блока плавного пуска

По высоте подходит один в один, по ширине тоже, только длина чуть больше, но место есть.

Теперь вопрос по цепям управления. Контакторы в исходной схеме включались напряжением 24 VAC, а наши АББ управляются напряжением минимум 100 VAC. Налицо необходимость промежуточного реле либо изменения напряжения питания цепи управления.

Однако, на официальном сайте ABB я нашёл схему, где показано, что это устройство способно работать и при 24 VAC. Попытал счастья – не получилось, не запускается…

Что же, ставим промежуточное реле, которое приводит напряжение к нужному уровню:

Пример монтажа системы плавного пуска электродвигателей

Вот с другого ракурса:

Пример монтажа системы плавного пуска электродвигателей

Вот и всё. Промежуточные реле обозвал 07КМ11 и 07КМ21. Кстати, они также нужны и для дополнительных цепей. Через них включаются индикаторы, и сухие контакты для внешнего устройства (пока не используются, в старой схеме – оранжевые провода).

Когда хотел управление использовать напрямую, без реле (24 VAC), планировал индикаторы включения пустить через контакты Com – Run, которые теперь остались неиспользованные.

Схемы плавного пуска

Вот исходная схема.

Схема жесткого пуска двигателей, через контакторы (исходная)

А вот как нехитро я изменил схему:

Схема с плавным пуском двигателей на софтстартерах

По настройкам – коротко. Тут три регулировки – время разгона, время замедления, и начальное напряжение.

Можно было бы использовать одно устройство плавного пуска, и контакторы выбора двигателя (переключать одно устройство на два двигателя). Но это усложнит и сильно изменит схему, и понизит надежность. Что для такого стратегического объекта, как котельная, очень важно.

Осциллограммы напряжения

Орешек знанья твёрд, но всё же
мы не привыкли отступать!
Нам расколоть его поможет
киножурнал «Хочу всё знать!»

Собрать схему отверткой всякий может. А для тех, кто хочет увидеть напряжение и понять, какие реальные процессы происходят, без осциллографа не обойтись. Публикую осциллограммы на выходе 2Т1 устройства плавного пуска.

Двигатель выключен. Чистый синус.

Не правда ли, логическая нестыковка – двигатель выключен, а напряжение на нём есть?! Это особенность некоторых устройств мягкого пуска. Неприятная и опасная. Да, на двигателе есть напряжение 220В, даже когда он стоит.

Дело в том, что управление происходит только по двум фазам, а третья (L3 – T3) подключена к двигателю напрямую.  А так как тока нет, то на всех выходах устройства действует напряжение фазы L3, которое проходит через обмотки двигателя. Та же ерунда бывает и в трехфазных твердотельных реле, вот моя статья.

Будьте осторожны! При обслуживании двигателя, подключенного к устройству мягкого пуска, отключайте вводные автоматы, и проверяйте отсутствие напряжения!

Запуск. Тиристоры режут фазу нещадно.

Поскольку нагрузка индуктивная, то синусоида не только режется на куски, но и сильно искажается.

Кстати, рекомендую ознакомиться с осциллограммами на выходе источника бесперебойного питания. Там тоже не всё так однозначно.

Помеха прёт, и это надо учитывать – возможны сбои в работе контроллеров и другой слаботочки. Чтобы это влияние уменьшить, надо разносить и экранировать цепи, устанавливать дроссели на входе, и др.

Двигатель почти включен. Около 90% от энергии синуса.

Фото сделано да пару секунд до того, как включился внутренний контактор (байпас), который подал полное напряжение на двигатель.

Фото корпуса

Ещё небольшой бонус – несколько фото внешнего вида устройства плавного пуска ABB  PSR-25-600.

ABB PSR-25-600 – вид снизу

Опция – разъем и крепления для подключения вентилятора охлаждения, в случае больших нагрузок

ABB PSR-25-600 – входные силовые клеммы и клеммы питания и управления.

Крепёж на ДИН-рейку. Надежный и качественный, как и вся продукция ABB.

Устройство плавного пуска

Принцип работы устройства плавного пуска электродвигателя

Устройство плавного пуска (УПП) – специальный «механизм», главным назначением которого является плавный пуск и такая же плавная остановка электродвигателя. Устройство плавного пуска электродвигателя может быть механическим, электромеханическим или электронным.

  • ✓ Характеристики УПП
  • ✓ Применение устройств плавного пуска двигателя

Характеристики УПП

В режимах запуска и остановки электрических приводов, работающих с асинхронными двигателями, мгновенный ток в 5-8 раз выше, нежели его номинальные значения.

Логично, что такой повышенный ток создает большую нагрузку на сеть электропитания, а в итоге это может привести к короткому замыканию или перегреву и, как следствие, к быстрому износу обмоток стартера.

При этом почти в два раза увеличивается крутящий момент ротора, что приводит к появлению динамических ударов и быстрому износу элементов электродвигателя.
Избежать появления вышеописанных проблем можно с помощью устройства плавного пуска асинхронных двигателей.

Такое устройство при запуске двигателя линейно наращивает подачу напряжения на него – от 30 % до номинального значения. Также устройство плавного пуска двигателя ограничивает верхнюю планку пускового тока, разрешая его повышение только в пределах 3-5 раз от номинального показателя.

Устройство плавного пуска двигателя может устанавливаться в приводных системах:

  • ✓вентиляторов;
  • ✓компрессоров;
  • ✓помп и насосов;
  • ✓конвейерных и транспортерных линий;
  • ✓центрифуг, мельниц, дробилок (систем с высокой инерцией);
  • ✓в комплексе с цепными, ременными и реверсивно-редукторными передачами.

Работа подобных «мягких» пускателей основывается на взаимодействии встречно включенных тиристоров силового типа. Вариативность данных устройств обуславливается различиями методов изменения напряжения, которые могут зависеть от нагрузки на электродвигатель, а также от сервисных функций и схем регулирования.

Схемы регулирования обусловлены непосредственным включением УПП в электросеть:

  • ✓Однофазные – для смягчения ударных механических нагрузок. Не осуществляется плавное торможение и не ограничивается пусковой ток. Такие УПП могут применяться только для электродвигателей мощностью до 11 кВт.
  • ✓Двухфазные – для пуска электропривода мощностью до 250 кВт на легких режимах.
  • ✓Трехфазные – пускатели универсального типа, подходящие для выполнения частых пусков и остановок. Такие устройства способны обеспечивать точную выдержку пользовательских характеристик.

Дополнительные сервисные функции устройств плавного пуска существенно расширяют их область применения. Так, УПП могут дополнительно использоваться для:

  • ✓управления крутящим моментом (важная функция для работы системы с устойчивой скоростью);
  • ✓защиты устройств от механических перегрузок;
  • ✓сигнализации возникшего перекоса или обрыва фаз;
  • ✓тепловой защиты;
  • ✓псевдочастотного регулирования (снижения скорости электродвигателя лишь на определенный отрезок времени);
  • ✓динамического торможения;
  • ✓перевода механизма в толчковый режим (только для механизмов с высокой инерционной массой).

Установка исходящих параметров для работы устройства плавного пуска (начальное торможение, время пуска двигателя и торможения) производится вручную. Что же касается внешнего управления, то оно может быть как аналоговым, так и цифровым.

Модели с аналоговым управлением регулируются специальными потенциометрами или посредством дополнительных внешних устройств. Цифровые устройства контролируют исходящие параметры через микропроцессорные контроллеры. Также стоит отметить, что цифровые УПП имеют большой функционал и широкий спектр настроек.

Большое количество качественных цифровых УПП выпускается под следующими марками:

  • ✓устройство плавного пуска schneider;
  • ✓устройство плавного пуска altistart;
  • ✓устройство плавного пуска abb;
  • ✓устройство плавного пуска schneider electric.

Выбирать подходящее УПП следует, ориентируясь на его перегрузочную способность, а также учитывая требования к полному и пусковому току электродвигателя и предположительное количество требуемых пусков за один час. Номинальный ток электродвигателя обязательно должен быть меньше, чем ток устройства плавного пуска.

Схема включения подобного устройства весьма сложна, поэтому в некоторых случаях, при надобности установки УПП, следует обращаться к профессионалам, которые подскажут и правильно подберут требуемое оборудование.

В нашем интернет-магазине вы найдете широкий ассортимент различного электрооборудования, среди которого без труда сможете выбрать и устройство плавного пуска. Купить УПП достаточно просто, нужно лишь выбрать подходящую модель и заполнить простую форму заказа.

В ассортименте нашего интернет-маркета вы найдете как иностранные, так и отечественные устройства плавного пуска. Цена на это оборудования различна и зависит от технических характеристик, а также бренда производителя.

Устройство плавного пуска: общие сведения, советы по выбору и особенности применения. Инструкция подключения и настройки!

Принцип работы устройства плавного пуска электродвигателя

Мягкий запуск двигателя и его деликатное торможение способны в разы увеличить срок службы системы за счет защиты от перегрева, скачков и рывков процессов. Как раз для этого было разработано устройство плавного пуска или сокращенно УПП, которое стабилизирует пусковые характеристики и обеспечивает равномерную работу механизма.

С помощью УПП можно избежать множество проблем в функционировании электродвигателя, поэтому важно знать назначение и принцип действия устройства плавного пуска, основные параметры, нюансы подключения и эксплуатации.

Чем помогает УПП

Во время запуска двигателя крутящиеся механизмы способны в два раза превышать номинальное значение, образуя пусковые токи, в несколько раз превосходящий средние рабочие показатели.

Подобные перезагрузки чреваты многими осложнениями:

  • Сильный перегрев;
  • Порча изоляции обмоток;
  • Срыв транспортерных лент;
  • Неисправность кинематической цепи;
  • Тяжелый пуск;
  • Остановка мотора.

Устройство плавного пуска электродвигателя в разы сглаживает механические рывки и гидравлические удары, обеспечивая постепенное нарастание мощности и стабильную работу мотора.

Недаром второе название прибора – софтстартер, что в переводе с английского означает “мягкий старт”.

На представленных фото устройства плавного пуска видно, что внешне механизм выглядит как набор схем и проводов, защищенных металлическим и пластмассовым корпусом. На самом же деле в основе прибора коммутационная аппаратура, тормозные колодки, блокираторы, противовесы и другие элементы, способные стабилизировать работу электрического двигателя.

Также механизм обладает и дополнительным функционалом:

  • Обеспечивает плавное торможение;
  • Защищает от короткого замыкания;
  • Предотвращает возможный обрыв фазы;
  • Исключает незапланированный самостоятельный пуск мотора;
  • Не допускает превышения номинальных рабочих значений;
  • Позволяет подобрать источник питания меньшей мощности;
  • Понижает расход энергии;
  • Экономит средства на эксплуатации и ремонте машины;
  • Снижает электромагнитные помехи.

Когда УПП необходимо

Некоторые машины не сразу дают понять, что нуждаются в сглаживающем механизме, однако чем раньше будет настроен плавный запуск, тем дольше и качественнее прослужит вся система.

К сожалению, чаще всего задумываются о подключении УПП только тогда, когда сам двигатель говорит о губительности пусковых процессов.

Чтобы понять это достаточно уловить одну из самых распространенных “показательных” ситуаций:

Источник питания не справляется со слишком тяжелым пуском. Например, сеть не способна выдавать требуемые мощности или обеспечивает выработку на максимальных уровнях функционирования, лампочки отключаются, срабатывают автоматические выключатели, отказываются запускаться некоторые контакторы, реле, генератор.

Запуску двигателя препятствуют защитные системы, срабатывая на превышение допустимых нагрузок. При отличном запуске пакетник “срабатывает” до достижения необходимой частоты.

Чтобы не допустить выхода электродвигателя из строя, рекомендуется как можно скорее настроить плавность запуска и торможения системы. Сделать это несложно, так как даже новичку под силу выбрать, установить и подключить устройство плавного пуска своими руками.

Как выбрать софстартер

Вопрос, как выбрать устройство плавного пуска, возникает довольно часто, ведь подбирается механизм под конкретный электродвигатель и источник питания.

Чтобы не ошибиться с параметрами и возможностями, рекомендуется обращать внимание на следующие показатели:

  • Максимальное значение тока, вырабатываемого мотором при самых высоких нагрузках;
  • Наибольшее число запусков в один час;
  • Номинальное напряжение на питающей системе;
  • Способность контролировать и ограничивать вырабатываемый ток;
  • Возможность шунтирования – отключения питающего блока от цепи, чтобы исключить перегрев и возгорание;
  • Количество фаз (две – компактнее и дешевле, три – надежнее и долговечнее при частых запусках);
  • Цифровое или аналоговое управление.

Главное, чтобы выдвигаемые к софтстартеру требования соответствовали с критериями, условиями работы, мощностью двигателя и номинальным значениям сети. Помогут в выборе и сводные таблицы, расчетные алгоритмы, предлагаемыми многими поставщиками для более удобного и качественного поиска подходящего прибора.

Как подключить и настроить

Настройка определяется соответствующей схемой подключения плавного пуска к двигателю. Стандартной считается та, где предусмотрено применение магнитного пускателя, теплового реле, быстродействующих предохранителей и регулирующих ток автоматов.

Чтобы правильно подключить устройство плавного пуска, необходимо четко следовать схемам, где наглядно обозначены все важные моменты:

  • Последовательность цепи;
  • Конец разгона;
  • Вывод заземления;
  • Наладка запуска и торможения;
  • Расположение нейтрали.

Не лишним будет и наладка специального регулятора, обеспечивающего обратную связь: получающего данные о токе двигателя и стабилизирующих рост напряжения.

Софтстартер может легко помочь в разы продлить срок службы электрического двигателя, при этом снизив сопутствующие расходы, а производимые мощности повысив без вреда для машины. Стабилизация работы механизма, контролирование нагрузок и регуляция происходящих процессов – все это станет незаменимым помощником в решении проблем тяжелого пуска.

Устройства плавного пуска (Софтстартеры). Виды и работа

Принцип работы устройства плавного пуска электродвигателя

Устройства плавного пуска (УПП)(Софтстартеры) представляет механизм, обеспечивающий плавный рост пусковых характеристик электродвигателей. Он смягчает процесс запуска и остановки работы электродвигателя.

Функции и возможности устройства плавного пуска

У двигателей, запустившихся в работу напрямую, характеристики значительно превышают номинальные значения.

Повышенные значения пусковых токов и крутящего момента при пуске, являются источниками повреждений, это механические рывки, повреждения изоляции обмотки, перегрев, тяжелый старт и прочих проблем с электродвигателем.

Но с помощью плавного пуска все нежелательные неисправности можно предупредить, поэтому электрические двигатели нуждаются в устройстве плавного пуска (УПП).

Главные функции УПП:

  • Плавный разгон и остановка.
  • Уменьшение пускового тока.
  • Согласование момента нагрузки с крутящим моментом двигателя.

В УПП напряжение на обмотках электродвигателя постепенно нарастает, обеспечивая ограничение тока. Благодаря этому, параметры электромашины при запуске сохраняются в неопасных пределах.

Устройство УПП

УПП выпускаются разных модификаций и могут отличаться принципом работы. Но все софтстартеры имеют одинаковые главные составляющие части.

Основные компоненты УПП:

  • Тиристоры. Эти элементы регулируют напряжение, которое подаётся на электродвигатель.
  • Блок печатных плат. Эта часть софтстартеров управляет тиристорами.
  • Радиаторы, вентиляторы. Эти приборы необходимы для рассеивания тепла.
  • Трансформатор тока. Благодаря этому компоненту, осуществляется измерение тока.
  • Корпус.

Некоторые устройства плавного пуска оснащены клавиатурой и дисплеем.

Также в зависимости от типа софтстартера, прибор может быть оборудован встроенным реле перегрузки, из-за чего отпадает потребность во внешнем реле.

Регулировка пусковых характеристик осуществляется по двум принципам:

  1. Механическому.
  2. Электрическому.

Механические УПП:

Простой способ осуществить плавный запуск двигателя заключается в принудительном удерживании усиливающейся скорости вращения с помощью тормозных колодок, жидкостных муфт и других элементов.

Этот способ имеет существенные минусы:

  • Уменьшение напряжения снижает крутящий момент на валу.
  • Продолжительный старт мотора повышает риск перегрева двигателя.
  • Длительный запуск может привести к перегреву полупроводниковых компонентов УПП, после чего они могут выйти из строя.

Также механическое управление пуском осуществляется исключительно при небольших нагрузках либо запуске двигателя вхолостую.

Электрические УПП считаются более совершенными, их разделяют на два вида по специфике работы:

  1. Амплитудные. Софтстартеры этого типа обеспечивают старт мотора в холостом режиме либо с умеренной нагрузкой.

    Эти устройства постепенно повышают напряжение на клеммах электродвигателя до предельных показателей.

  2. Частотные (фазовые).

    Эти УПП управляют частотными характеристиками фазного тока, не снижая напряжение. Благодаря этому, запустить мотор удается даже при большой нагрузке.

Фазовые УПП предоставляют следующие преимущества:

  • Возможность осуществлять размеренное прибавление вращательной частоты в рабочем режиме.
  • Гарантируют стабильность высокой мощности мотора даже при смене скорости вала.

Минусы фазовых УПП:

  • Сложность монтажа.
  • Сложная наладка.

Электрические приборы для плавного пускового процесса не имеют таких недостатков, которые могли бы привести к неполадке самого устройства или двигателя. Они всегда оправдывают себя при эксплуатации, но стоят гораздо дороже УПП с механическим управлением.

Упп разделяют на следующие типы:

  • Регуляторы напряжения, в которых присутствует функция обратной связи. Это усовершенствованные модели УПП, контролирующие фазовый сдвиг между током в обмотках и напряжением.
  • Регуляторы напряжение, в которых отсутствует функция обратной связи. Приборы широко используются по сравнению с другими пускателями. Управление в них можно осуществлять по двум либо трем фазам исключительно по указанным ранее параметрам.
  • Регуляторы пускового момента. Эти приборы могут координировать исключительно одну фазу электродвигателя. А это позволяет контролировать пусковой момент двигателя и совсем незначительно снижать пусковой ток. Можно сказать, эти регуляторы не контролируют ток, его уменьшение малозаметно, поэтому он практически такой, как при прямом запуске. Если такой ток будет протекать по обмоткам двигателя дольше, чем обычно при прямом пуске, то может возникнуть, перегрев электродвигателя. Поэтому этот тип УПП не используется для устройств, требующих снижение пусковых токов. Но их можно использовать для плавного запуска однофазных асинхронных электродвигателей.
  • Регуляторы тока с обратной связью. Это наиболее прогрессивные устройства для плавного пуска. Они осуществляют прямой контроль над током, что позволяет более точно управлять пуском. Преобладают простой настройкой, а также программированием пускателя. Большая часть параметров устанавливается автоматически.

Приборы, управляющие напряжением и не имеющие обратной связи, являются наиболее распространённым видом УПП. Они бывают двух- и трехфазными. Эти УПП могут контролировать напряжение в двух и сразу в трех фазах двигателя.

Регулирование выполняется исключительно по ранее заданной программе, которая включает показатели исходного напряжения пуска и точное время, за которое напряжение должно дорасти до номинального значения. Некоторые модели этих пускателей способны ограничивать пусковой ток, но чаще всего это ограничение связано с уменьшением напряжения при пуске двигателя.

Также они могут управлять процессом замедления, медленно снижая напряжение для остановки.

Электрические и механические характеристики этих устройств отвечают всем стандартным требованиям, предъявляемым к УПП. Но более совершенным вариантом этих софтстартеров являются регуляторы, имеющие обратную связь

Регуляторы напряжения с обратной связью получают данные о токе двигателя и, пользуясь этой информацией, приостанавливают рост напряжения во время запуска.

Снижать нарастание напряжения регуляторы начинают тогда, когда током будут достигнуты предельные значения, которые указываются заранее. Такие УПП позволяют осуществлять запуск с минимальным значением тока и удовлетворительным значением крутящего момента.

А данные, которые они получают, применяются для организации защит от дисбаланса фаз, перегрузки и пр.

Применение УПП

УПП эксплуатируются во всех областях промышленности и сельского хозяйства. Их можно применять везде, где присутствует электродвигатель. Но выбирают устройства плавного пуска исходя из нагрузки двигателя, а также частоты запусков.

При небольших нагрузках и не частых запусках следует устанавливать регуляторы без обратной связи или регуляторы пускового момента. Эти УПП подходят для шлифовальных станков, некоторых типов вентиляторов, вакуумных насосов и пр. оборудования с низкими нагрузками.

При частых инерционных запусках и высокой нагрузке рекомендованы регуляторы с обратной связью. Их целесообразно применять в центрифуге, ленточной пиле, вертикальном конвейере, распылителе и т.п.

Таким образом, можно выделить главные плюсы использования УПП:

  • Повышают срок службы электродвигателей и других исполнительных устройств, контактирующих с электродвигателем.
  • Понижают расход энергии.
  • Снижают затраты на эксплуатацию машин.
  • Регулирует длительность разгона и торможения электрического двигателя.
  • Снижает силу электромагнитных помех.
  • Монтируется и эксплуатируется без особых трудностей.

Недостатки:

  • Не выполняют возврат направления вращения.
  • Не контролируют в установившемся режиме частоту вращений двигателя.
  • Уменьшить пусковой ток до меньших значений, требующихся в момент старта для вращения ротора.

Устройства плавного пуска электродвигателя, считаются распространёнными приборами, решающими проблемы прямого пуска.

Устройство плавного пуска электродвигателя: принцип работы асинхронного электродвигателя

Принцип работы устройства плавного пуска электродвигателя

Асинхронный электродвигатель имеет возможность самостоятельного запуска из-за взаимодействия между вращающимся потоком магнитного поля и потоком обмотки ротора, вызывая высокий ток в нём.

В результате статор потребляет большой ток, который к моменту достижения двигателем полной скорости становится больше номинального, что может привести к нагреву двигателя и его повреждению.

Для предотвращения этого необходимо устройство плавного пуска электродвигателя (УПП).

Он заключается в том, что устройство регулирует напряжение, приложенное к двигателю во время пуска, контролируя характеристики тока. Для асинхронных двигателей пусковой момент приблизительно пропорционален квадрату пускового тока.

Он пропорционален приложенному напряжению.

Крутящий момент также можно считать приблизительно пропорциональным приложенному напряжению, таки образом регулируя напряжение во время пуска, ток, потребляемый машиной, и его крутящий момент контролируются устройством и могут быть уменьшены.

Используя шесть SCR в конфигурации, как показано на рисунке устройство плавного пуска может регулировать напряжение, подаваемое на двигатель при запуске от 0 вольт до номинального линейного напряжения. Плавный пуск электродвигателя может осуществляться тремя способами:

  1. Прямой запуск с применение полного напряжения нагрузки.
  2. Применяя постепенно пониженное.
  3. Применение пуска частичной обмотки с помощью стартёра автотрансформатора.

УПП могут быть двух типов:

  1. Открытое управление: напряжение пуска подаётся с задержкой во времени независимо от тока или скорости двигателя. Для каждой фазы два SCR проводятся сначала с задержкой на 180 градусов в течение соответствующих полуволновых циклов (для которых выполняется каждый SCR). Эта задержка постепенно уменьшается со временем до тех пор, пока приложенное напряжение не достигнет номинального значения. Она также известна, как система временного напряжения. Этот метод фактически не контролирует ускорение двигателя.
  2. Контроль замкнутого контура: контролируются любые характеристики выходного сигнала двигателя, такие как текущий ток или скорость. Пусковое напряжение изменяется соответственно для получения требуемого отклика. Таким образом, задачей УПП является контроль угла проводимости SCR и управление напряжением питания.

Преимущества плавного пуска

Твердотельные плавные пускатели используют полупроводниковые приборы для временного снижения параметров на клеммах двигателя. Это обеспечивает контроль тока двигателя, чтобы уменьшить крутящий момент предельного значения двигателя. Управление основано на управлении напряжением клемм двигателя на двух или трёх фазах.

Несколько причин, почему этот метод предпочтительнее других:

  1. Повышенная эффективность: эффективность системы УПП с использованием твердотельных переключателей обусловлена в основном низким состоянием напряжения.
  2. Управляемый запуск: пусковые параметры можно контролировать, легко изменяя их, что обеспечивает запуск его без каких-либо рывков.
  3. Управляемое ускорение: ускорение двигателя контролируется плавно.
  4. Низкая стоимость и размер: это обеспечивается с использованием твердотельных переключателей.

Компоненты твердотельных устройств

Выключатели питания, такие как SCR, которые подвергаются фазовому контролю для каждой части цикла. Для трехфазного двигателя два SCR подключаются к каждой фазе. Реле плавного пуска электродвигателя должны быть рассчитаны как минимум в три раза больше, чем линейное напряжение.

Рабочий пример системы для трехфазного асинхронного двигателя. Система состоит из 6 SCR, контрольной логической схемы в виде двух компараторов — LM324 и LM339 для получения уровня и напряжения рампы и оптоизолятора для управления приложением напряжения затвора к SCR на каждой фазе.

Таким образом, управляя длительностью между импульсами или их задержкой, управляемый угол SCR контролируется и регулируется подача питания на этапе пуска двигателя. Весь процесс на самом деле представляет собой систему управления с разомкнутым контуром, в которой контролируется время применения импульсов запуска затвора для каждого SCR.

Основы SCR

SCR (Silicon Controlled Rectifier) представляет собой управляемый стабилизатор мощности постоянного тока с высокой мощностью.

Устройства плавного пуска асинхронных двигателей SCR представляет собой четырехслойное кремниевое полупроводниковое устройство PNPN.

Оно имеет три внешних терминала и использует альтернативные символы на рисунке 2 (a) и имеет транзисторную эквивалентную схему на рисунке 2 (b).​

Основной способ использования SCR в качестве переключателя с анодом, положительным относительно катода, управляемым в момент запуска машины.

Основные характеристики SCR можно понять с помощью этих диаграмм.

Устройство плавного пуска электродвигателя можно включить и заставить действовать как выпрямитель с прямым смещением кремния, кратковременно применяя к нему ток затвора через S2.

SCR быстро (в течение нескольких микросекунд) автоматически защёлкивается во включённое состояние и остаётся включённым даже при удалении привода затвора.

Это действие показано на рисунке 2 (b) ток начального затвора включается Q1, а ток коллектора Q1 включается Q2, ток коллектора Q2 затем удерживает Q1, даже когда привод затвора удаляется. Потенциал насыщения составляет 1 В или около того и создаётся между анодом и катодом.

Для включения SCR требуется только короткий импульс затвора. Как только SCR будет зафиксирован, он может быть снова отключён, кратковременно уменьшая его ток анода ниже определённого значения, как правило, несколько миллиампер, в приложениях АС выключение происходит автоматически в точке пересечения нуля в каждом полупериоде.

Значительный коэффициент усиления доступен между затвором и анодом SCR, а низкие значения тока затвора (обычно несколько мА или меньше) могут контролировать высокие значения анодного тока (до десятков усилителей). Большинство SCR имеют анодные номиналы в сотни вольт. Характеристики затвора SCR аналогичны характеристикам транзисторного соединения — эмиттера транзистора (см. Рис. 2 (b)).

Внутренняя ёмкость (несколько pF) существует между анодом и затвором SCR, и резко возрастающее напряжение, появляющееся на аноде, может вызвать достаточный прорыв сигнала к затвору для включения SCR.

Этот «эффект скорости» может быть вызван переходными процессами на линии питания и т. д.

Проблемы с эффектом скорости можно преодолеть, проводя сеть сглаживания CR между анодом и катодом, чтобы ограничить скорость подъёма до безопасного значения.

Операция с переменной скоростью вращения

Сетевое напряжение переменного тока (рис. 5) выпрямляется с помощью пассивного диодного моста. Это означает, что диоды срабатывают, когда линейное напряжение больше напряжения на секции конденсатора. Результирующая форма волны имеет два импульса в течение каждого полупериода, по одному для каждого окна диодной проводимости.

Форма волны показывает некоторый непрерывный ток, когда проводимость переходит от одного диода к следующему. Это типично, когда он используется в звене постоянного тока привода и присутствует некоторая нагрузка. Инверторы используют широко-импульсную модуляцию для создания выходных сигналов. Треугольный сигнал генерируется на несущей частоты, с которой инвертор IGBT переключится.

Эта форма сигнала сравнивается с синусоидальной формой волны на основной частоте, которая должна быть доведена до двигателя. Результатом является волновая форма U, показанная на рисунке.

Выход инвертора может быть любой частотой ниже или выше частоты линии до пределов инвертора и/или механические пределы двигателя. Нужно обратить внимание на то, что привод всегда работает в пределах рейтинга скольжения двигателя.

Процесс регулирования пуска

Сроки включения SCR — это ключ к управлению выходом напряжения для УПП. В течение пуска логическая схема УПП определяет, когда включить SCR.

Он не включает SCR в точке, где напряжение идёт от отрицательного к положительному, но ждёт некоторое время после этого. Это известный процесс, называемый как «постепенное восстановление» SCR.

Точка включения SCR установлена или запрограммирована тем, что начальный крутящий момент, начальный ток или ограничение тока строго регулируется.

Результат поэтапного восстановления SCR представляет собой несинусоидальное пониженное напряжение на выводах двигателя, которое показано на рисунках. Поскольку двигатель является индуктивным, а ток отстаёт от напряжения, SCR остаётся включённым и проводит, пока ток не достигнет нуля. Это происходит после того, как напряжение стало отрицательным. Выход напряжения индивидуального SCR.

Если сравнивать с формой полного напряжения, можно видеть, что пиковое напряжение совпадает с полным волновым напряжения. Однако ток не увеличивается до того же уровня, что и при приложении полного напряжения из-за индуктивного характера двигателей. Когда это напряжение подаётся на двигатель, выходной ток выглядит, как на рисунке.

Поскольку частота напряжения равна так же, как и линейная, частота тока тоже одинакова. SCR поэтапно переходят к полной проводимости, пробелы в токе заполняются до тех пор, пока волновая форма не будет выглядеть так же, как у двигателя.

Характеристики двигателя с использованием УПП

Такой плавный пуск асинхронного электродвигателя в отличие от привода переменного тока, имеет характеристики тока в сети и тока двигателя всегда одинаковыми. Во время запуска изменение тока зависит напрямую от величины приложенного напряжения. Крутящий момент двигателя изменяется, как квадрат приложенное напряжение или тока.

Наиболее важным фактором при оценке является крутящий момент двигателя. Стандартные двигатели производят приблизительно 180% от момента полной нагрузки при запуске. Следовательно, 25%-е снижение параметров будет равно крутящему моменту полной нагрузки. Если двигатель потребляет 600% от полного тока нагрузки при запуске, то ток в этой схеме уменьшит пусковой ток от 600% до 450% нагрузки.

Схемы подключения пускателей

Существует два варианта, с помощью которых стартер осуществляет запуск электродвигателя: стандартная схема и внутри треугольника.

Стандартная схема. Пускатель соединён последовательно с линейным напряжением, подаваемым на двигатель.

Внутри треугольника существует ещё одна схема, по которой подключён пускатель, называется схемой внутренней дельты.

В этой схеме два кабеля, которые подключаются к одному из двигателей, присоединяются непосредственно к источнику питания I/P, а другой кабель будет подключён через пускатель.

Одна особенность этой схемы заключается в том, что пускатель можно использовать для больших двигателей, например, для двигателей мощностью 100 кВт, поскольку фазные токи делятся на 2 части.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.