Принцип работы фреоновой холодильной установки

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Принцип работы фреоновой холодильной установки

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Как устроен холодильник

Любой современный холодильник состоит из следующих основных агрегатов:

  1. Двигатель.
  2. Конденсатор.
  3. Испаритель.
  4. Капиллярная трубка.
  5. Осушительный фильтр.
  6. Докипатель.

Схема работы холодильника

Электродвигатель

Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.

Двигатель состоит из двух агрегатов:

Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.

Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.

При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.

А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.

При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.

Положение двигателя холодильника

В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.

Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.

Конденсатор

Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.

Испаритель

Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.

Устройство компрессора

Капиллярная трубка

Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.

Фильтр-осушитель

Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.

Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.

Внутри трубки находится цеолит — минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.

Фильтр-осушитель

Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.

Докипатель

Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.

Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.

Как работает холодильник

Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:

  1. Вывод тепловой энергии из устройства в окружающее пространство.
  2. Концентрация холода внутри корпуса прибора.

Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.

Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.

Принципиальная схема работы холодильника

Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.

На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.

Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.

А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.

В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.

Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.

Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.

Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.

После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.

Основные типы охлаждающих систем

По принципу действия различают следующие типы холодильников:

  • компрессионные;
  • адсорбционные;
  • термоэлектрические;
  • пароэжекторные.

В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.

В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.

А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.

Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.

В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.

Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.

Принцип работы абсорбционных холодильников

Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.

Схема работы абсорбционного устройства

В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.

А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.

При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.

Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.

Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.

Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.

В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.

Достоинством абсорбционных приборов является бесшумность работы агрегатов.

Принцип работы саморазмораживающегося холодильника

Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.

Существуют два типа саморазмораживающихся систем:

  1. Капельная.
  2. Ветреная (No frost).

В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.

В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.

Промышленные холодильники

Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.

А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.

Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.

Принцип работы инверторного холодильника

Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.

Устройство инверторного двигателя

При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.

Устройство термостата холодильника

Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.

Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.

Устройство терморегулятора

Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.

А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.

Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.

Холодильник без электричества – правда или вымысел?

Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».

Холодильник без электричества

Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.

Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.

Устройство и принцип работы холодильной установки

Принцип работы фреоновой холодильной установки

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации.

К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта.

Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Как работает холодильная машина

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:

  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах.

Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения.

Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта.

Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:

  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети.

Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода.

Чем больше этот показатель, тем выше эффективность установки.

Устройство и принцип работы холодильной установки

Основные компоненты холодильного контура. Цикл парокомпрессионной холодильной машины

Принцип работы фреоновой холодильной установки

Отвод тепла с помощью теплоты плавления льда

В основе действия холодильных машин лежит второй закон (или второе начало) термодинамики, который применительно к холодильным машинам гласит: для передачи теплоты от менее нагретого тела (холодного) к более нагретому (горячему) необходимо затратить энергию.Иными словами, чтобы охладить какое-либо тело, необходимо отвести от него теплоту, используя для этого какое либо техническое устройство.

В системах охлаждения используется явление увеличения теплосодержания вещества во время плавления и кипения при постоянной температуре. Самый простой способ отвода тепла от определенной области осуществляется при помощи ледяного блока. При плавлении лед поглощает тепло из окружающей атмосферы и продуктов, а продукт плавления льда отводится за пределы ледника—в окружающую среду.

Поскольку теплота парообразования во много раз больше теплоты плавления, во время процесса кипения поглощается большее количество теплоты при постоянной температуре.

Поэтому рекомендуется производить перенос теплоты при температуре кипения вещества. В этом состоит преимущество компрессионных систем охлаждения.

В дальнейшем в данном курсе будут рассмотрены особенности монтажа парокомпрессионных систем охлаждения.

Рассмотрим цикл работы холодильной установки на примере бытового холодильника.

Цикл холодильной установки (бытовой холодильник)

Холодильник оснащен теплообменником (испарителем), куда поступает хладагент в парожидкостной фазе (смесь пара с жидкостью). В испарителе за счет кипения рабочего вещества теплота отводится от охлаждаемой среды — воздуха в системе непосредственного охлаждения (как в рассматриваемом примере), воды или рассола в системе с промежуточным хладоносителем.

При температуре +5°C внутри холодильника температура кипения хладагента в испарителе составит около -15°C, которая в случае использования хладагента R134a соответствует абсолютному давлению 1,7 бар. Тепло из внутренней части холодильника отводится более холодным испарителем, где кипит хладагент. Температура внутри холодильника снижается.

Компрессор откачивает пары хладагента из испарителя, сжимает их и направляет в другой теплообменник – конденсатор, расположенный на внешней части холодильной камеры.

В конденсаторе теплота отводится от конденсирующегося рабочего вещества с помощью охлаждающей среды — воздуха или воды— которая при этом нагревается. Хладагент меняет агрегатное состояние на жидкое.

Обычно температура окружающего конденсатор воздуха (комнатная) составляет от 20 до 25°C. Для обеспечения правильного отвода теплоты от конденсатора в окружающую среду температура конденсации должна превышать температуру окружающей среды в данном случае на 20-30 К. Для хладагента R134a и предполагаемой температуры конденсации 50°C абсолютное давление в конденсаторе составляет 13,2 бар.

Таким образом, задача компрессора состоит не только в удалении паров хладагента из испарителя, но и в их сжатии.

Жидкое рабочее вещество из конденсатора проходит через регулирующий (дроссельный) вентиль, где происходит процесс дросселирования (расширения рабочего тела без совершения внешней работы).

Этот вентиль (в данном случае капиллярная трубка) расположен между конденсатором и испарителем, в котором хладагент расширяется и его давление снижается до давления кипения.

Здесь замыкается цикл охлаждения.

Ниже приведена схема холодильного цикла в условных обозначениях

Принципиальная схема парокомпрессионной холодильной машины: КМ — компрессор; КД — конденсатор;РВ — регулирующий вентиль; И — испаритель; /, 2,3,4 — точки цикла

Процессы, обозначенные на схеме:

4—1—кипение рабочего вещества (хладагента) в испарителе, при этом теплота Q0 отводится от охлаждаемой среды 1—2—сжатие паров рабочего вещества в компрессоре; 2—3—конденсация паров рабочего вещества в конденсаторе, при этом теплота Q передается окружающей или нагреваемой среде;

3—4—дросселирование рабочего вещества в регулирующем вентиле.

Таким образом, парокомпрессионная холодильная машина должна иметь четыре обязательных элемента: компрессор, конденсатор, испаритель и регулирующий вентиль.

Температура кипения рабочего вещества в испарителе зависит от давления кипения р0, а оно, в свою очередь,— от производительности компрессора. Температуру кипения поддерживают такой, чтобы обеспечить необходимую (заданную) температуру охлаждаемой среды. Для понижения температуры кипения необходимо понизить давление кипения, что можно сделать, увеличив производительность компрессора.

Температура конденсации рабочего вещества и соответствующее ей давление конденсации зависят главным образом от температуры среды, используемой для охлаждения конденсатора.

Чем она ниже, тем ниже будут температура и давление конденсации. Величины давлений кипения и конденсации в значительной мере влияют на производительность компрессора.

Они же в основном определяют и количество энергии, которое необходимо для его работы.

Представление цикла холодильной машины в термодинамических диаграммах

Теоретические циклы холодильных машин изображают на термодинамических диаграммах, которые позволяют лучше понять принцип их действия. Термодинамические диаграммы, кроме того, служат теоретической базой для расчета холодильных машин в целом и их отдельных элементов.

Наиболее распространены диаграммы энтальпия — давление (i, lgp -диаграмма) и энтропия — температура (s, T-диаграмма). Первую применяют для тепловых расчетов, вторую — для анализа термодинамической эффективности циклов. При этом используют следующие параметры:

  • температуру в °С или абсолютную температуру Т в К;
  • давление в Па или производных единицах (1кПа=103Па, 1 МПа= 106 Па= 10,2 кгс/см2 = 10 бар);
  • удельный объем ν в м3/кг;
  • плотность в кг/м3, (величина, обратная удельному объему). Кроме простых измеряемых параметров, используют также сложные расчетные параметры:
  • энтальпию I в кДж;
  • энтропию S в кДж/К. На диаграммах и в расчетах применяют обычно удельную энтальпию i в кДж/кг, т. е. отнесенную к единице массы хладагента. Логарифмическая ось давления принимается в целях уменьшения масштаба диаграммы.

 На i, lgр и s, T-диаграммах из точки К, соответствующей критическому состоянию хладагента, расходятся две так называемые пограничные кривые, разделяющие поле на три зоны: переохлажденной жидкости (ПЖ), парожидкостной смеси (Ж+П) и перегретого пара (ПП).

Если на i, lgp-диаграмме провести линию постоянного давления (p = const) — изобару, а на s, Т-диаграмме—линию постоянной температуры (T=const) — изотерму, то они пересекут пограничные кривые в точках А и В. В точке А хладагент находится в состоянии насыщенной жидкости, а в точке В — насыщенного пара.

Фазовый переход от жидкости к пару на диаграммах идет слева направо. При подводе теплоты (энтальпия и энтропия возрастают) переохлажденная жидкость, достигнув состояния насыщения в точке А, начинает кипеть.

По мере дальнейшего подвода теплоты содержание жидкости в единице массы хладагента уменьшается, а содержание пара – увеличивается, достигая в точке В 100 %. Образуется насыщенный пар. Паросодер-жание х хладагента на левой пограничной кривой равно 0, а на правой—1.

Состояние при х=1 называют также сухим насыщенным паром, чтобы подчеркнуть, что пар не содержит частиц жидкости в отличие от влажного пара, представляющего собой смесь пара и жидкости (П + Ж).

Фазовый переход от пара к жидкости на диаграммах идет справа налево. При отводе теплоты происходит процесс конденсации хладагента. Он начинается в точке В и заканчивается в точке A.

На i, lgр-диаграмме разность значений энтальпий i в точках А и В будет равна величине r в кДж/кг, которую, в зависимости от направления процесса (от А к В или от В к А), называют удельной (скрытой) теплотой парообразования или удельной теплотой конденсации.

На s, Т-диаграмме величине r будет соответствовать площадь (заштрихованная) под процессом А — В.

Параметры, соответствующие состоянию хладагента на левой пограничной кривой (х = 0), обозначают с одним штрихом, а на правой (х = 1) — с двумя.

В процессах кипения и конденсации давление и температура насыщения остаются неизменными, так как подводимая или отводимая теплота расходуется на изменение агрегатного состояния хладагента. При этом температура насыщения зависит от давления. При его увеличении она повышается, а при уменьшении — понижается.

Если после подвода определенного количества теплоты и достижения хладагентом состояния насыщенного пара в точке В продолжать подводить теплоту при постоянном давлении (p = const), то этот процесс В — С будет сопровождаться повышением температуры: ТС>ТВ. Насыщенный пар перейдет в точке С в состояние, называемое перегретым паром.

Аналогично, если после окончания процесса конденсации В — А продолжать отводить теплоту, то дальнейший процесс А — D будет сопровождаться понижением температуры. Насыщенная жидкость перейдет в точке D в состояние, называемое переохлажденной жидкостью.

На i, lgp-диаграмме изотермы (T = const) в зоне ПЖ идут почти вертикально вверх, параллельно изоэнтальпам—линиям постоянной удельной энтальпии (i=const), а в зоне ПП—резко вниз.

На s, T-диаграмме изотермы горизонтальны. Изобары (р=const) в зоне ПЖ идут резко вниз и почти совпадают с пограничной кривой (x = 0), в зоне ПП — поднимаются круто вверх. Изоэнтальпы (i =const) спускаются круто вниз.

Линии постоянной удельной энтропии (s = const) Ha s, T-диаграмме вертикальны, а на i, lgр-диаграмме располагаются примерно под углом 45° к горизонтали.

С небольшим подъемом от горизонтали идут на обеих диаграммах линии постоянного удельного объема (ν = const). Большим давлениям р соответствует меньший удельный объем ν.

Поскольку при работе парокомпрессионной холодильной машины в установившемся (стационарном) режиме давления кипения р0 и конденсации рк хладагента постоянны, количество подводимой или отводимой теплоты изображается на i, lgр-диаграмме в виде отрезка прямой линии и равно разности энтальпий в начале и конце процесса. В этом заключается достоинство i, lgp-диаграммы, которое обусловило ее широкое использование для расчета парокомпрессионных холодильных машин.

Контрольные вопросы:

  1. Каковы основные элементы холодильного контура?
  2. В чем заключается принцип работы холодильной машины
  3. Как представляется процесс работы холодильной машины в диаграммах?

Литература:

  1. Изучающим основы холодильной техники. Под общей редакцией А. Д. Акимовой. М., 1996. – 144 с.

Принцип работы фреоновой холодильной установки – Все об электричестве

Принцип работы фреоновой холодильной установки

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации.

К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта.

Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.