Принцип работы чиллера для чайников
Принцип работы чиллера
Принцип работы чиллера во многом сходится с механизмом стандартного кондиционера. В двух агрегатах задействован парокомпрессионный холодильный цикл, который и обеспечивает охлаждение жидких веществ. Все холодильные машины схожи по своему строению, отличается только модель и способ охлаждения.
Устройство чиллера
Агрегаты, вырабатывающие холод, имеют в своем строении следующие элементы:
- конденсатор;
- компрессорная установка;
- Специальный теплообменник фреон-вода;
- испаритель.
В отличие от кондиционера или холодильника, чиллер охлаждает не воздух, а вещества, которые предназначены для перенесения холода, например, вода или гликолевый раствор. А уже охлажденные жидкости переносятся по трубам к тому месту, где требуется холод.
Принцип работы чиллера для чайников
Например, в кондиционере циркулирует фреон. Охлажденный газ проходит через радиатор внутреннего блока. Радиатор внутреннего блока обдувается воздухом.
В результате воздух охлаждается, а фреон нагревается и уносится в компрессор.
В чиллере вместо фреона — вода. Холодная вода проходит через радиатор внутреннего блока.
Радиатор внутреннего блока обдувается теплым воздухом из комнаты. Воздух охлаждается, а вода нагревается и уносится обратно в чиллер.
Теплообменник чиллера фреон-вода
Теплообменник для чиллера устроен таким образом, что внутри него существует два контура:
- В первом контуре циркулирует фреон;
- Во втором — жидкость (например, вода).
Оба контура теплообменника соприкасаются между собой через металлические стенки, но фреон и вода, естественно, между собой не перемешиваются. Для большей эффективности, движение происходит навстречу друг другу.
В теплообменнике фреон-вода происходит следующее:
- Жидкий фреон через ТРВ (терморегулирующий вентиль) попадает в свой контур теплообменника. В процессе он расширяется, в результате происходит отбор тепла от стенок, охлаждая их и нагревая фреон.
- Вода проходит по своему контуру теплообменника и ее температура падает за счет охлажденных стенок, которые охладил фреон.
- Далее, фреон уносится в компрессор, а холодная вода — по назначению (для охлаждения чего-либо).
- Цикл повторяется.
Компрессор для чиллера
Компрессор является главной частью любой кондиционерной машины, внутри него активизируются основные процессы агрегата, поэтому на работу этого элемента уходит значительная часть энергии.
Компрессорная установка нацелена на сжатие паров действующего вещества прибора (фреона).
После того, как пар перешел в сжатое состояние, а давление внутри агрегата повысилось, начинается процесс конденсации.
Современные компрессоры нацелены на всестороннюю экономию энергии, они оснащены инновационными деталями, которые помогают сохранить энергетическую эффективность и оптимизировать управление прибором. Принцип работы системы чиллер фанкойл заключается в рациональном расходе энергии, а также минимизации шума при работе агрегата.Такие современные приборы отличаются:
- высокой эффективностью;
- минимальным шумовым уровнем;
- многофункциональностью;
- компактными размеров и форм;
- универсальностью;
- минимальными вибрационными движениями;
- удобством при использовании.
Принцип работы чиллера фанкойл основан на использовании минимального количества энергии и максимальной выдаче тепловых результатов.
Чиллер с выносным конденсатором
Существуют виды охлаждающих приборов, которые можно использовать удаленно от места нахождения конденсатора. Принцип работы чиллера с выносным конденсатором основан на высокой мобильности и универсальности. Такие приборы имеют элементарное строение и простую схему эксплуатации.
Выносной конденсатор чиллера может работать на двух типах вентиляторов:
Благодаря универсальности, удобству и высокой эффективности такие аппараты используются повсеместно для производственных нужд.
Единственное ограничение — чиллер с выносным конденсатором может быть использован только для охлаждения. Задействовать обратный холодильный цикл для нагрева жидкости не получится.
Абсорбционный чиллер фанкойл
Абсорбционные приборы отличаются от стандартных чиллеров строением и схемой эксплуатации. Принцип работы абсорбционного чиллера основывается на использовании раствора бромида лития (LiBr), который поглощает испарения внутри агрегата, переходя в состояние разбавленного вещества.
Полученный раствор отправляется в генератор, где нагревается и выпаривается под воздействием пара или выхлопных газов. Раствор бромида лития (LiBr) возвращается в свое прежнее состояние, и направляется к своим истокам – в абсорбер. Тем временем полученный пар из воды подходит к конденсатору, чтобы замкнуть цикличный процесс и повторить процедуру вновь.
Аппараты на абсорбционной системе охлаждения используются в производственных сферах для выполнения масштабных работ.
Чиллер что это такое и как он работает, принцип работы чиллера с воздушным и водяным охлаждением
Чиллер, что это такое и для чего он нужен? Чем он отличается от кондиционеров, и каков его принцип работы? Если вы столкнулись с вопросом выбора или обслуживания климатического оборудования, об этих вещах стоит знать.
Многие считают, что чиллер – это просто большой кондиционер. Но такое мнение в корне неверно. Такое холодильное оборудование имеет свои отличия и особенности. В этой публикации мы расскажем, какие бывают виды таких холодильных машин и чем они отличаются.
Чиллер: что это такое и как он работает
Чиллеры (англ. Chiller – холодильник, холодильная машина) – устройства для обеспечения охлаждения или обогрева в промышленных масштабах. Их часто используют на производствах, для обеспечения микроклимата в торговых центрах, жилых домах, офисных зданиях.
Это климатическое оборудование можно сравнить с наружным блоком кондиционера, к которому подключено большое количество внутренних. В их качестве выступают фанкойлы, поэтому такая система называется «чиллер-фанкойл» принцип работы чиллера таков, что к нему можно подключить любые типы фанкойлов и их комбинации.
Как и в обычном кондиционере, производство тепла или холода происходит за счет циклов испарения и конденсации хладагента. Но в отличие от сплит-систем, он циркулирует только в самом устройстве.
Между основным блоком чиллера и фанкойлами проложена магистраль, по которой циркулирует вода, являющаяся теплоносителем. Иногда вместо нее используют гликоль, его производные и их смеси с водой.
Рабочий цикл
Основными элементами чиллера являются:
- Компрессор;
- Конденсатор;
- Испаритель;
- Теплообменник.
Компрессор сжимает фреон, повышая его давление настолько, что он переходит в жидкое состояние. При этом его температура существенно повышается.
Попадая в конденсатор, фреон отдает тепло воздуху или воде. Он охлаждается и переходит в испаритель.
В испарителе установлен регулирующий вентиль, который контролирует количество хладагента. Фреон расширяется и переходит в газообразное состояние. При этом его температура падает.
В таком состоянии он переходит в теплообменник, где охлаждает воду в магистрали. Холодная вода поступает в фанкойлы, тем самым обеспечивая их работу.В том случае, когда чиллер работает на обогрев, процесс такой же, но циркуляция идет в обратном порядке.
Пример работы (значения приведены для наглядности)
- Перед попаданием в компрессор фреон имеет температуру 0 градусов. После сжатия и перехода в жидкую фазу она повышается до +60.
- Проходя через конденсатор хладагент охлаждается до +30 °С.
- В испарителе фреон переходит в состояние газа, его температура падает до -15 градусов.
- Протекая через теплообменник, он нагревается от воды до 0 °С.
- Цикл повторяется снова.
Преимущества и недостатки чиллеров
По своему назначению чиллеры схожи с прецизионными кондиционерами, мультизональными или мульти-сплит системами. Они так же призваны обеспечивать микроклимат в нескольких помещениях и больших объемах. Но имеют ряд принципиальных отличий.
Фреон R134a – характеристики и свойства, замены и применение
В системах чиллер-фанкойл за обогрев или охлаждение отвечает теплоноситель – вода или антифриз. В мульти-сплит системах приток холода или тепла осуществляется хладагентом – фреоном, хладоном. Из-за разницы в теплоемкости он менее эффективен, чем теплоноситель системы чиллер-фанкойл.
В мультизональном кондиционере допускается расстояние между внутренним и наружным блоком в несколько десятков метров. При этом чем оно больше, тем быстрее падает эффективность кондиционера.
Длина труб между чиллером и фанкойлом может быть более 100 метров. При этом эффективность несколько снижается, но не так сильно, как у мульти-сплита. Все зависит от скорости потока, мощности насоса и теплоизоляции труб.
Кроме эффективности, у чиллеров есть следующие плюсы:
- Возможность изменять количество фанкойлов;
- Чиллер не портит внешний вид фасада здания;
- Фреон не циркулирует к фанкойлам, поэтому при его утечке нет риска нанести вред здоровью людей;
- Долгий срок службы;
- Низкая стоимость монтажа фанкойлов и магистралей для теплоносителя.
Но есть у такого климатического оборудования минусы:
- Высокая стоимость;
- Дорогая профилактика и обслуживание.
Как работает чиллер с воздушным охлаждением
Холодильные машины с воздушным охлаждением конденсатора наиболее распространены. Их часто можно увидеть на крышах больших зданий. Принцип работы чиллера с воздушным охлаждением основан на теплообмене между фреоном и атмосферным воздухом.
Различают два вида такого оборудования:
- С выносным, наружным конденсатором;
- С встроенным, внутренним конденсатором.
В первом случае блок конденсатор находится на удалении от основного блока и связан с ним магистралью, по которой циркулирует фреон. Такие установки дороже, но удобнее в обслуживании – внутренний блок можно установить в помещении.
Чиллеры с встроенным конденсатором выполнены в виде моноблока. Их монтируют снаружи здания, в основном на крыше. Их стоимость ниже, но обслуживание затруднено.
Холодильные машины с выносным конденсатором подвержены влиянию внешних факторов (осадки, механические повреждения). Они имеют меньший срок эксплуатации.
Чиллеры с встроенным конденсатором на крыше здания.
Принцип работы чиллера с водяным охлаждением
В чиллерах с водяным охлаждением конденсатора в качестве среды для отбора или сброса тепловой энергии используется вода. Это может быть пруд, река, бассейн или любой водоем. В них конденсатор находится отдельно от основного блока и погружен в воду.
Такие устройства имеют хорошую тепло- и хладопроизводительность. Они меньше подвержены зависимости от температуры окружающей среды.
На вопрос как работает чиллер с водяным охлаждением, можно ответить просто – точно так же, как с воздушным. Единственное отличие в том, что конденсатор погружен в воду, а не находится на открытом воздухе.
При этом чиллеры с водяным охлаждением более эффективны, чем с воздушным. Дело в том, что вода имеет большую теплоемкость и способна более эффективно отбирать или отдавать тепло. Но рассчитать разницу в энергопотреблении чиллеров двух вариантов можно только на индивидуальном примере.
Абсорбционный чиллер
Абсорбционный чиллер или АБХМ имеет отличный от других видов принцип работы. В его конструкции отсутствует компрессор, а давление внутри системы повышается за счет внешних источников тепла. Такое оборудование может использовать низкотемпературную тепловую энергию.
Подробнее о функционировании абсорбционных чиллеров читайте в статье «Принцип работы АБХМ».
В последнее время производители ведут разработки холодильных машин малой мощности, которые можно было бы использовать в быту. Уже существуют опытные модели, но их стоимость слишком велика. Прогнозируется, что через 10-15 лет можно будет установить абсорбционный чиллер для обеспечения микроклимата в частном доме.
Всегда готовы помочь и ждем вашего обращения. Оставьте контакты и мы перезвоним для консультации.
Заказать бесплатную консультацию!
На противоположной стороне чиллера расположены входной и выходной водяные патрубки: к чиллеру поступает от здания теплая вода, а обратно возвращается холодный поток. Понятия «теплый» и «холодный» весьма условны. Фактически при работе чиллера оба потока являются холодными: их температура составляет порядка 10°С .
Однако температура теплого потока выше. Обе температуры настраиваются и могут быть различны, но существует два стандартных температурных графика: 7/12 и 10/15. В первом случае температура холодного потока равна +7°С , а теплого +12°С . Во втором случае +10°С и +15°С соответственно.
Охлаждение воды
Охлаждение воды в чиллере осуществляется в испарителе–теплообменнике, в котором рабочее вещество холодильной машины (холодильный агент или коротко – хладагент или хладон) испаряется за счет тепла, получаемого от воды. Таким образом, вода отдает свою энергию хладагенту, за счет чего и охлаждается. Но откуда берется хладагент?
Контур хладагента
Хладагент циркулирует внутри чиллера. Его движение по холодильному контуру осуществляется с помощью компрессора, который, по сути, исполняет роль насоса. Нагнетаемый компрессором хладагент имеет высокое давление (до 30 атмосфер) и температуру (порядка 70°С ).
Далее температура сбрасывается в конденсаторе: протекающий по трубкам хладагент обдувается наружным воздухом. В то же время хладагент меняет своё агрегатное состояние: переходит из газового состояния в жидкое.
Однако давление хладагента осталось высоким. Охлажденный хладон высокого давления проходит через регулирующий вентиль, где расширяется. Давление хладагента резко падает.
Этот процесс напоминает подачу дыхательной смеси для аквалангиста: из баллона, где газ хранится под высоким давлением, он поступает к человеку, который дышит смесью с нормальным атмосферным давлением. При этом температура дыхательной смеси заметно снижается.
Аналогично и хладагент после регулирующего вентиля теряет не только давление, но и температуру. Таким образом, его температура снижается всего до нескольких градусов. Теперь он может охлаждать поток воды системы холодоснабжения здания. Это происходит в испарителе. Далее хладагент снова поступает в компрессор, и цикл замыкается.
Теплоотвод
Таким образом, в чиллере циркулирует специальное рабочее вещество – хладагент. Его цель – охладить воду и энергию, полученную от воды, и передать в окружающую среду.
Оба процесса передачи энергии реализуются в теплообменных аппаратах (теплообменниках).
Как мы уже знаем, охлаждение воды происходит в испарителе: здесь хладагент получает тепловую энергию воды.
А выброс тепла в окружающую среду происходит во втором теплообменнике – в конденсаторе.
Конденсатор – это единственное место, где хладагент контактирует с окружающей средой: трубки, по которым проходит хладагент, обдуваются наружным воздухом. При этом горячий хладагент остывает, то есть отдает свою энергию, а уличный воздух нагревается.В этом можно легко убедиться, проведя рукой сверху над чиллером или даже просто подойдя к наружному блоку обычного кондиционера. Температура воздуха, которым оттуда дует, заметно выше температуры окружающего среды.
Итак, тепло, которое выделяется людьми, оборудованием, освещением, а также тепло, поступающее в помещения за счет солнечной радиации, передаётся циркулирующей по трубам воде. В испарителе холодильной машины вода это тепло передает хладагенту. А в конденсаторе холодильной машины это же тепло выходит наружу.
Компрессор – сердце холодильной машины
Своеобразным сердцем чиллера является компрессор. Так, в чиллерах Hitachi серии Samurai используются новейшие винтовые компрессора (см. рисунок 2). Компрессора являются самыми энергозатратными элементами чиллера, поэтому оптимизация их энергопотребления – одна из основных задач.
Рисунок 2. Компоновка двухвинтового компрессора в чиллерах Hitachi серии Samurai: 1. Высоконадежный двухполюсный электродвигатель HITACHI2. Встроенный маслоотделитель (маслоотделитель циклонного типа)3. Смотровое стекло для контроля уровня масла4. Подогреватель масла5. Высокоточные сдвоенные винтовые роторы
6. Фильтр на участке всасывания
Благодаря малому количеству движущихся частей компрессор отличается высокой степенью надежности, низким уровнем шума и низким уровнем вибрации.
Кроме того, в данных компрессорах используется технология непрерывного регулирования холодопроизводительности, что позволяет идеально адаптироваться к нагрузке путем точного управления температурой охлажденной воды и отказаться от использования дорогих инвертеров.
Сброс тепла наружу
Рисунок 3. Вентиляторы конденсаторов в чиллерахHitachi
Отвод тепла в окружающую среду осуществляется в конденсаторе – теплообменнике, через который движется хладагент и наружный воздух. При этом движение хладагента, как мы уже знаем, обеспечивается компрессором.
Движение же воздуха осуществляется вентилятором конденсатора. На общем виде чиллера (см. рис. 1) сверху видны 6 цилиндрических элементов – именно в них и установлены вентиляторы, обеспечивающие движение воздуха через конденсатор. Воздух засасывается по бокам чиллера, проходит через конденсаторы, нагревается, а затем выбрасывается наружу вертикально вверх.
Вентиляторы конденсатора являются вторыми по величине потребителями энергии в чиллерах, поэтому их разработке и профилированию также уделяется большое внимание.
В частности, компания Hitachi использует новые двухлопастные вентиляторы (см. рис. 3), которые позволяют снизить шум по сравнению с четырехлопастным винтом. При этом увеличивается статический напор воздушного потока и, в то же время, существенно снижается мощность, потребляемая электродвигателем.
Работа «на тепло»
Многие чиллеры могут работать и по обратному холодильному циклу, вырабатывая тепло вместо холода. Это сродни реверсивному режиму работы кондиционеров – режиму работы «на тепло».
В этом случае конденсатор чиллера играет роль испарителя и забирает тепло из окружающей среды, а в испарителе (который теперь стал конденсатором) тепло передается холодоносителю.
Кстати, холодоноситель в этом случае уместнее именовать теплоносителем.
Холодный и теплый потоки
Рассматривая понятия «теплого» и «холодного» потока стоит сказать, что они весьма условны. Принцип работы чиллера предполагает использование двух холодных потоков. Температура «теплого» потока не превышает 15°С. Но все-таки, температура «теплого» потока несколько выше. Как правило, разница между этими показателями составляет 5°С.
Что касается схемы работы, то теплые потоки воды поступают в чиллер от здания. А холодный поток возвращается обратно – от устройства к зданию.
Система автоматизированного управления чиллером
Любой современнон устройство оснащен системой автоматизированного управления. Данная система состоит из следующих элементов:
- панели управления;
- контроллера;
- защитных средств.
Главным элементом здесь является контроллер. Именно он отвечает за управление функционированием всех основных элементов данного оборудования. Более того, контроллер регулирует реверсирующий цикл охлаждения.
В обязанности автоматизированной системы также входит включение компрессора при фиксации увеличения температуры рабочей жидкости. В случае снижения температуры система автоматически завершает работу установки. Таким образом, применение данной системыгарантирует надежность работы компрессора на протяжении всего эксплуатационного периода.
Что такое чиллер? Принцип работы системы
Довольно непросто разбираться во всем, что есть на свете. А быть профессионалом во всех областях науки и техники и вовсе практически невозможно.
Однако по долгу службы, в учебных целях, или просто для повышения собственной осведомленности нам необходимо быстро получить максимум информации о каком-то устройстве или процессе, в легком и доступном для непрофессионалов, виде.
Для этих целей существуют так называемые “пособия для чайников”, то есть для тех, кому нужно быстро понять, о чем идет речь и как это работает. Разберем подобную инструкцию и рассмотрим принцип работы чиллера (для чайников).
Что это такое
Чиллер (или холодильная машина по-другому) – это агрегат для создания искусственного холода и передачи его соответствующему холодоносителю. В роли такового, как правило, выступает обычная вода, реже – рассолы (растворы солей в воде).
Этимология слова относит его к английскому языку, к глаголу to chill (англ.) – охлаждать, и образованному от него существительному chiller (англ.) – охладитель. Холодильная машина может быть двух разных типов. Есть парокомпрессионный и абсорбционный чиллер.
Принцип работы каждого из них существенно отличается.
Охлаждать всегда
Основная задача любого холодильного агрегата – получение холода в искусственных условиях, то есть там, где это невозможно сделать за счёт природы (фрикулинга). Понятно дело, что охладить воду зимой, с глубоким минусом на улице, не составит особого труда. Но что делать летом, когда температура окружающего воздуха намного выше необходимой нам? Здесь на помощь приходит чиллер.
Принцип работы его основан на использовании специальных сред, создаваемых определенными веществами (хладагентов). Они обладают способностью отбирать теплоту от другой среды (то есть охлаждать её) при кипении, переносить и выделять её в иную среду при конденсации.
При работе холодильного цикла такие хладагенты изменяют своё фазовое (агрегатное) состояние с жидкого на газообразное и обратно.
Теплообменники
Любую холодильную машину можно условно разделить на две зоны: низкого и высокого давления. Независимо от типа, в любом чиллере всегда будут присутствовать два теплообменника: испаритель – в зоне низкого давления и конденсатор – в зоне высокого давления. Без этих двух компонентов системы не сможет работать чиллер.
Принцип работы таких теплообменников основан на теплопроводности (кондукции), то есть передаче теплоты от одной среды в другую через разделяющую эти две среды стенку.
Испаритель холодильной машины отдаёт выработанный холод в систему потребителю, а конденсатор либо сбрасывает отведённую теплоту в окружающую среду, либо отправляет её на рекуперацию (подогрев первой ступени ГВС, теплые полы и др.).
Как работает
Рассмотрим стандартный парокомпрессионный чиллер. Принцип работы такой холодильной машины теоретически основан на цикле Карно. Компрессор повышает давление газа, одновременно с этим поднимая его температуру. Горячий газ под высоким давлением подается в конденсатор, где участвует в процессе теплообмена с другой средой более низкой температуры.
Как правило, это либо вода (рассол), либо воздух. Здесь газ конденсируется в жидкость, в процессе чего выделяется избыточная теплота, отдаваемая холодоносителю и отводимая, таким образом, от потребителя. Далее жидкость поступает в дросселирующие устройство, где происходит снижение давления в системе с соответствующим падением температуры.
После этого частично вскипевшая в ТРВ (терморегулирующем вентиле) жидкость поступает непосредственно в испаритель, который также является важной частью системы “чиллер-фанкойл”. Принцип работы испарителя аналогичен конденсатору.
Здесь происходит теплообмен между холодоносителем (который и уносит холод в фанкойл) и хладагентом, который начинает вскипать и при этом забирает теплоту от другой среды. После испарителя газ поступает в компрессор, и цикл повторяется.
Система “чиллер-фанкойл”
Принцип работы основан на подготовке воздуха в специальных теплообменниках-доводчиках, фанкойлах (от слов fan (англ.) – вентилятор и coil – змеевик), которые устанавливают в воздуховодах перед его непосредственной раздачей в обслуживаемое помещение.
Преимущества таких систем перед центральным кондиционированием заключается в том, что в каждой комнате можно поддерживать разные параметры воздуха (температура, влажность, подвижность), в зависимости от назначения помещения и расчета теплового баланса.
И хотя воздух с приточной установки иногда пропускают через доводчики для его финальной обработки, то есть так же, как и в системе “чиллер-фанкойл”, принцип работы описанных систем заметно отличается.
Схема чиллера. Устройство чиллера. Водоохлаждающая машина
Подробности
Чиллер – это водоохлаждающая машина, предназначенная для снижения температуры воды или жидких хладоносителей. На этой странице будет подробно рассмотрена схема и устройство чиллера, а также как он работает.
Работа чиллера основана на практически безостановочном цикле (в зависимости от вида потребителя).
Принцип работы чиллера заключается в том, чтобы охладить, нагретую потребителем воду на несколько градусов и подать её в таком виде на потребитель или на промежуточный теплообменник, в котором вода (если её температура не позволяет пускать её на прямую в чиллер) охлаждается на, практически, любое количество градусов.
Необходимое значение снижения температуры хладоносителя – задаётся будущим пользователем водоохладителя в зависимости от вида и характеристик хладоносителя, требуемых потребителем этого самого хладонгосителя.
Оборудованием, которому требуется холодная энергия, передаваемая от водоохлаждающей машины к хладоносителю могут быть самые разнообразные потребители: станки, системы кондиционирования воздуха, термопластавтоматы, индукционные машины, масляные насосы, станки по изготовлению полиэтиленовой плёнки и другие системы, требующие требующие при своей работе постоянной подачи к ним охлаждённой воды. Разнообразные модификации и широкий диапазон холодопроизводительности позволяет использовать водоохладители, как для одного потребителя с очень маленьким тепловыделением, так и для предприятий с большим количеством станков большой выделяемой тепловой мощности. Помимо этого, охладители воды применяются в пищевой промышленности во многих технологических линиях по производству напитков и других продуктов, для обеспечения охлаждения льда катков и ледовых площадок, в металлообработке (индукционные печи), в исследовательских лабораториях (обеспечение работы испытательных камер) и т.д. и т.п.
Выбор водоохлаждающей машины – это серьезная задача, требующая таких специфических знаний как устройство чиллера, а так же принцип взаимодействия чиллера совместно с другими элементами общей схемы.
Для принятия грамотного решения о том, какой охладитель оптимально впишется в схему совместной работы всех потребителей и самого охладителя – необходим большой опыт расчетов, подбора и последующего успешного внедрения комплекса оборудования на базе охладителей воды в технологический процесс, каким и обладают наши специалисты.
Отдельной сферой является автоматизация чиллера, которая позволяет сделать работу устройства еще более эффективной, оптимизировав контроль и управление за всеми протекающими процессами.Конечно же, для того чтобы подобрать холодильный аппарат, нет необходимости знать все тонкости работы холодильной машины и автоматику чиллера, но основополагающие знания принципов помогут вам наиболее чётко сформулировать техническое задание для расчета и профессионального подбора всех элементов, из которых потом будет собрана совместная с потребителями схема чиллера.
Схема чиллера
На приведённом ниже чертеже – будет разобрана схема чиллера, дано описание его элементов и их функциональная принадлежность. В результате чего Вам будет понятно устройство чиллера, как осуществляется работа чиллера и всех его элементов.
Принципиальная схема водоохладителя. Питер Холод – поставляет и монтирует водоохлаждающие машины и их обвязку “под ключ” |
Водоохлаждающая машина работает по принципу сжатия газа с выделением тепла и его последующим расширением с поглощением тепла, т.е. выделением холода. Водоохлаждающая машина состоит из четырех основных элементов: компрессор, конденсатор, ТРВ и испаритель. Тот элемент, в котором вырабатывается холод называется – испаритель.
Задача испарителя – отвести тепло от охлаждаемой среды. Для этого через него протекает хладоноситель (вода) и хладагент (газ, он же фреон). До попадания в испаритель газ в сжиженном виде находится под большим давлением, попадая в испаритель (где поддерживается низкое давление) фреон начинает кипеть и испаряться (отсюда название Испаритель).
Фреон кипит и отбирает энергию у хладоносителя который находится в Испарителе, но отделен от фреона герметичной перегородкой. В результате этого хладоноситель охлаждается, а хладагент – повышает свою температуру и переходит в газо-образное состояние. После этого газообразный хладагент попадает в компрессор.
Компрессор сжимает газообразный хладагент который при сжатии нагревается до высокой температуры в 80…90 ºС. В этом состоянии (горячий и под высоким давлением) фреон попадает в конденсатор, где за счёт обдува окружающим воздухом охлаждается.
В процессе охлаждения газ – фреон конденсируется (поэтому блок, в котором происходит этот процесс называют – конденсатор), а при конденсации газ переходит в жидкое состояние. На этом цепь преобразования фреона из жидкости в газ и обратно подходит к своему началу.
Начало и конец этого процесса разделяет ТРВ (термо- расширительный вентиль) который является по сути – большим сопротивление по ходу движения фреона из конденсатора в испаритель. Это сопротивление обеспечивает перепад давления (до ТРВ – конденсатор с высоким давлением, после ТРВ – испаритель с низким давлением).
По пути движения фреона по замкнутому контуру есть ещё и второстепенные элементы, которые улучшают процесс и повышают эффективность описанного цикла (фильтр, вентили и соленоидные вентили и регуляторы, переохладитель, система добавления масла для компрессора и масло отделитель, ресивер и прочее).