Переходное сопротивление заземления гост

Измерение металлосвязи: методика, нормы, периодичность проверки

Переходное сопротивление заземления гост

Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи.

Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы.

Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.

Под данным термином принято понимать связь (электрическую цепь), образованную электроустановкой и заземлителем. Основное требование к металлосвязи – непрерывность цепи заземления. Нарушение этого условия грозит образованием высокой разности потенциалов в цепях электроустановки, что представляет угрозу для жизни и может повлечь за собой выход из строя оборудования.

Надежный  контакт заземлителя и объекта заземления обеспечивает низкую величину переходного сопротивления

Со временем может наблюдаться рост переходных сопротивлений в цепи заземления, что приводит к образованию дефектов металлосвязи, давайте разберемся с природой этого явления.

Чем вызван рост переходного сопротивления?

Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера.

Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления.

На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.

Поверхность медного контакта, увеличенная микроскопом

Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь.

В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи.

Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.

Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:

  1. Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
  2. Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
  3. Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.

Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.

В соответствии с требованиями ПУЭ металлические элементы электроустановок подлежат заземлению. Замеры металлосвязи производятся между главной заземляющей шиной и элементом, подлежащим проверке. По нормам сопротивление контактов в одном переходе должно быть 0,01 Ом ± 20%.

Если измерительный прибор подтверждает наличие качественного соединения, выполняется проверка следующего узла. Когда между заземлителем и заземленной электроустановкой несколько переходов, то их суммарное сопротивление не должно выходить за пределы 0,05 Ом.

Измерение сопротивления переходных контактов

Если сопротивление превышает допустимые нормы, следует проверить состояние контактов, зачистить их, соединить и произвести повторные измерения.

Большинством электролабораторий замеры металлосвязи проводятся по следующему алгоритму:

  1. Осуществляется визуальный осмотр контактов заземляющих проводников. Эффективны при поисках «плохого» контакта специальные приборы – тепловизоры, они быстро позволяют обнаружить проблемное соединение.
  2. Сварочные соединения проверяются на прочность путем применения механической нагрузки.
  3. Все заземленные элементы конструкции тестируются на наличие металлосвязи.
  4. Проверка наличия электрического тока на заземленных элементах.
  5. Полученные результаты фиксируются в специальном протоколе.

Приведенная методика измерений доказала свою эффективность.

Нормы и правила

Согласно нормам ПУЭ заземляющие проводники, а также используемые для выравнивания потенциалов, необходимо надежно соединять, чтобы обеспечить наличие непрерывности цепи заземления.

При этом для стальных проводников предписывается сварочное соединение, другие способы контакта допускаются только в том случае, если имеется защита от разрушающего воздействия воздушной среды.

При использовании болтовых соединений, должны быть приняты соответствующие меры, не позволяющие ослабевать контактному соединению.

Все соединения цепи заземлителя и заземленного устройства должны быть расположены таким образом, чтобы к ним имелся свободный доступ, поскольку должен производиться осмотр, с целью проверки непрерывности электрического соединения. Исключение их этого правила – герметизированные контакты.

В Правилах также указано, что для контакта с заземляющими устройствами могут выполняться болтовыми или сварочными соединениями. Если устройства электроустановок подвержены сильной вибрации или их часто перемещают на другое место, то применяются гибкий защитный провод.

Более детальную информацию о нормах и правилах, можно получить в ПУЭ (р. 1.7.).

Периодичность

Согласно норм ПТЭЭП и ПУЭ, испытания металлосвязи проводится по графику, определенному техническим отделом объекта. Как правило, в этом случае руководствуются табл. 37 п. 3.1 ПТЭЭП, где установлена следующая периодичность измерения металлосвязи:

  • В помещениях и объектах, относящихся к повышенной категории опасности, замеры переходных сопротивлений в заземляющих цепях должны проводиться ежегодно, при других обстоятельствах — не реже одного раза на протяжении трех лет.
  • Для лифтового и подъемного оборудования – 1 год.
  • Стационарным электроплитам – 1 год.

Как правило, проверка металлосвязи производится совместно с другими видами электроизмерений (сопротивления изоляции, проверка целостности электропроводки и т.д.).

Помимо этого, обязательные измерения металлосвязи проводятся в следующих случаях:

  1. Если производился ремонт или переоснащение электрооборудования.
  2. При испытаниях новых электроустановок.
  3. После проведения монтажных работ.

Приборы для измерения

Учитывая, что измерения металлосвязи проводятся на уровне сотых Ома, то обычные измерительные приборы, например, мультиметры, для этой цели не подходят. Когда проводят замеры сопротивления заземления, используют более точные приборы, достаточно чувствительные, чтобы измерять сопротивления малого уровня.

Прибор для измерения заземления Metrel MI3123

Большинство таких устройств оснащены дополнительными функциями, например, представленный на рисунке прибор Metrel MI3123 может также измерять электропроводимость грунта и тока утечки.

Фиксация результатов в протоколе измерения

Все результаты измерений заносятся в специальный протокол испытаний. Данные фиксируются в таблице, с указанием наименования каждого осмотренного соединения. В отчете также приводится информация о количестве осмотренных узлов, их местоположении и отображается максимальное значение общего сопротивления контактов защитной цепи.

Если в процессе испытаний обнаружено отсутствие металлосвязи, информация об этом обязательно фиксируется в документе и одновременно в приложении к протоколу (дефектной ведомости).

Кратко о профилактике.

Регулярно проводить замеры металлозаземления, не значит отказаться от профилактики. Чтобы обеспечить непрерывность защитных цепей необходимо регулярно проверять, в каком состоянии находятся контактные соединения, и при необходимости подтягивать их. Не менее важно очищать контакты пыли, окисной пленки и грязи.

При обнаружении наличия электрического напряжения на одном из элементов конструкции, необходимо позаботится о ее качественном заземлении. В противном случае возрастает риск возникновения нештатной ситуации.

Не стоит экономить на проверке качества устройства защитного заземления, поскольку потери могут стать более затратными, чем оплата вызова электролаборатории.

Важно ознакомиться и прочитать:

4 ома, 10 или 30 ом? Правильное сопротивление заземления частного дома

Переходное сопротивление заземления гост

Внимание! При отсутствии специального образования и должного опыта работа с электричеством может быть опасна!

Коснусь сегодня этой животрепещущей темы — каково должно быть сопротивление растеканию электрического тока у заземления дачного домика, и в каком месте вообще его надо делать?

По поводу величины сопротивления мнения сильно расходятся, поскольку в ПУЭ именно о заземлителе возле дома не сказано чётко. Поэтому в этой статье я постараюсь дать исчерпывающую аргументированную конкретику по этому вопросу.

Для нетерпеливых скажу сразу — заземлению подлежит шина заземления в домашнем щитке. Сопротивление заземления по нормативам должно быть не более 30 Ом. Ниже будет обоснование со ссылками на пункты нормативов.

Если же перестраховываться, то лучше сделать 10 Ом или меньше, чтобы при повреждённом на вводе в дом PEN существеннее снизить возникшее напряжение на корпусах оборудования, и чтобы при коротком замыкании во внутренней сети смог отключиться автомат на 16А.

Что именно и как заземлять?

Если очень кратко и упрощённо, то существуют две актуальных для нас системы заземления — TT и TN. Система заземления TT — это отдельный заземлитель у дома (уголок или система сваренных уголков, вбитых в землю), который соединяется напрямую с шиной заземления (PE) в щитке. Далее от шины отходят только проводники заземления кабелей внутренней разводки.

Электроды для заземления

Система заземления TN — это то же самое, только помимо заземления шины PE на уголок, она напрямую заземляется на нулевой провод с магистрали ЛЭП, идущий от подстанции, заземлённый как у самого трансформатора, так и на некоторых опорах ЛЭП.

Какая из систем лучше? Какую применять?

Технический циркуляр № 32/2012, в пунктах 3 и 4 разъясняет требование ПУЭ п.1.7.

59 «Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены

Согласно разъяснению циркуляра, если магистраль протянута отдельными воздушными неизолированными проводами, она считается небезопасной для реализации системы TN (высока вероятность отдельного обрыва нулевого проводника, что ведёт к появлению опасного напряжения на проводе заземления), и в этом случае следует временно заземляться по системе TT до реконструкции магистрали. В случае же с магистралью, протянутой проводом СИП, необходимо использовать только систему TN. С этим можно спорить, можно не спорить, но давайте всё же основываться на некотором консолидированном мнении, уже воплощённом в хоть какие-то документы.

Итак, поскольку в большинстве посёлков воздушные линии уже реконструированы и проведены СИПом, нас будет интересовать только система TN.

Итак, мы выяснили, что заземление дачного домика должно представлять собой следующую конструкцию. Магистральный нулевой проводник (т.н.

совмещённый нулевой рабочий и нулевой защитный проводник, PEN), заземлённый на трансформаторе и повторно на некоторых столбах воздушной линии, заходит в домашний щиток на шину заземления PE. Эта шина заземляется на заземление у дома (фактически ещё одно т.н.

повторное заземление PEN-проводника). В том же щитке располагается шина ноля (N). Шины PE и N соединены перемычкой (т.н. разделение PEN на PE и N). Всё. Вот вам в щитке и ноль, и заземление.

Когда заземлять шину повторно не обязательно?

Согласно ПУЭ п.1.7.61, рекомендуется повторное заземление шины в любом случае, но обязательный характер такое повторное заземление носит лишь в случае воздушного ввода («Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.»).

Если от столба проложен кабель, то достаточно повторных заземлений на столбах воздушной линии. Считается, что вероятность обрыва PEN в кабеле меньше, чем вероятность обрыва PEN в воздушной линии СИП. Неоднозначное, на мой взгляд, мнение (а как же потенциальные проблемы с контактом PEN в месте ответвления?), но оно закреплено в ПУЭ.

Заготовки для повторного заземления PEN в щитах учёта на столбах. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

ПУЭ

Про сопротивление повторного заземления воздушного ввода в дом читаем в п. 1.7.102-1.7.103:

«1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника…»

«1.7.103.

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.»

То есть, исходя из этих пунктов, наиболее часто встречающаяся трёхфазная магистральная воздушная линия с линейным напряжением 380 вольт должна иметь повторное заземление, как минимум, на своём конце. Все повторные заземления такой воздушной линии должны иметь общее сопротивление не более 10 Ом.

То есть, если повторное заземление только одно, то его сопротивление должно быть не более 10 Ом. Если два — каждое не более 20 Ом (в сумме 10). Если три — каждое не более 30 ом (в сумме тоже 10). А вот дальше действует ограничение, что сопротивление каждого повторного заземления этой линии не должно быть больше 30 Ом.

То есть, их может быть сколь угодно много, но сопротивление каждого из них выше 30 Ом возрастать уже не должно.

Итак, мы видим, что в п. 1.7.103 речь идёт о ВЛ в целом, а не о магистрали ВЛ. Для сомневающихся приведу терминологию ПУЭ:

«2.4.2. Воздушная линия (ВЛ) электропередачи напряжением до 1 кВ – устройство для передачи и распределения электроэнергии по изолированным или неизолированным проводам, расположенным на открытом воздухе и прикрепленным линейной арматурой к опорам, изоляторам или кронштейнам, к стенам зданий и к инженерным сооружениям

«2.4.3. Магистраль ВЛ – участок линии от питающей трансформаторной подстанции до концевой опоры.
К магистрали ВЛ могут быть присоединены линейные ответвления или ответвления к вводу.


Линейное ответвление от ВЛ – участок линии, присоединенной к магистрали ВЛ, имеющий более двух пролетов.


Ответвление от ВЛ к вводу – участок от опоры магистрали или линейного ответвления до зажима (изолятора ввода).»

То есть, повторные заземления всей линии вместе с заземлениями вводов к домам должны в сумме давать не более 10 Ом, а каждое повторное зазеление, в том числе и у вводов в дома, должно иметь сопротивление не более 30 Ом.

Технический циркуляр

Ещё один аргумент для всё ещё сомневающихся. Уже упоминавшийся мною выше технический циркуляр № 31/2012, в пункте 2 даёт чёткое разъяснение по поводу сопротивления повторного заземления на вводе в дом:

«При питании от ВЛИ сопротивление повторного заземления у потребителя выбирается из условия обеспечения надёжного срабатывания УЗО при повреждении изоляции (однофазное замыкание на землю) при отключенном PEN проводнике ответвления от ВЛИ. Сопротивление рассчитывается по току надёжного срабатывания УЗО, равному 5 IΔn, но должно быть не более 30 Ом. При удельном сопротивлении грунта более 300 Ом·м допускается увеличение сопротивления до 150 Ом.»

То есть, если у вас на вводе стоит УЗО с номинальным отключающим дифференциальным током 300 мА, то при повреждении изоляции (однофазном замыкании на землю) заземление должно дать ток утечки 5*IΔn = 5*300 = 1,5 А.

Это возможно при сопротивлении около 230 В / 1,5 А = 150 Ом. Это больше, чем прописанное ограничение не более 30 Ом.

То есть, даже в случае УЗО с таким большим номинальным отключающим дифференциальным током сопротивление в 30 Ом всё ещё остаётся актуальным и уменьшаться не собирается.

ПТЭЭП

Ну, и напоследок, цифра в 30 Ом подтверждается ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) Приложение 3.1. Таблица 36. «Наибольшие допустимые значения сопротивлений заземляющих устройств электроустановок», в которой тоже значится цифра 30 Ом.

Процесс вбивания электрода заземлителя для повторного заземления PEN в щите учёта на столбе. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

Откуда же вылезло 4 Ома?

Часто люди читают п.1.7.97, а там есть ссылка на п.1.7.101, где прописаны 4 Ома. Но п.1.7.97 написан для заземляющих устройств электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью, которые используются одновременно для заземления электроустановок напряжением до 1 кВ с глухозаземленной нейтралью.

Сам же пункт 1.7.101 нормирует сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока.

Почему лучше перестраховаться, и вместо 30 Ом сделать всё же 10?

1. Не стоит полагаться на независящие от вас повторные заземления магистрали ВЛ и повторные заземления на вводах у соседей. Их может банально не быть вовсе.

2. Если PEN будет повреждён на вводе в ваш дом, вы останитесь наедине только со своим заземлением.

Всё это приведёт к тому, что если сопротивление вашего заземления будет 30 Ом, то ток короткого замыкания на землю будет приблизительно 230 В / 30 Ом = 7,5 А, а этого недостаточно, чтобы отключить даже 10-амперный автомат освещения. И будет у вас счётчик накручивать…

Кроме того, на корпусах заземлённых приборов появится ещё более опасный потенциал, чем он был бы при 10 Омах.

Ещё один нюанс. При вводе в дом газоснабжения, газовики требуют для газового котла заземления 10 Ом, потому что перестраховываются, не надеясь на часто отсутствующие повторные заземления магистральной ВЛ.

Повторное заземление можно не делать?

Интересный ответ дан в журнале «Новости электротехники» №5(29) от 2004 (Виктор Шатров, сотрудник Госэнергонадзора Минэнерго России,
г. Москва; Людмила Казанцева, ведущий специалист ОАО «НИИПроектэлектромонтаж», г. Москва):

Воздушные линии электропередачи используются во многих случаях для электроснабжения небольших потребителей (повсеместно: сельская местность, дачные участки, поселки), наибольшая мощность каждого из которых редко превышает 10 кВт.

В этом случае достаточным является наличие заземлителя повторного заземления ВЛ, если расстояние до него не превышает 100 м. Выполнение повторного заземления непосредственно на вводе в здание не обязательно.

И его ответ на вопрос: «Куда должен подключаться заземляющий проводник повторного заземления индивидуальных домов» (если таковое всё таки имеется)?

Для деревянных зданий при отсутствии металлических коммуникаций, входящих в здание, допускается не выполнять главную заземляющую шину, а нулевой защитный проводник присоединять на изоляторе ввода.

При наличии металлических коммуникаций, входящих в здание из любых материалов, необходимо предусматривать главную заземляющую шину и к ней присоединять нулевой защитный (РЕN) проводник питающей линии (ответвления), заземляющий проводник повторного заземления и входящие в здание коммуникации.

Размещать главную заземляющую шину в таких случаях следует вблизи вводного устройства таким образом, чтобы она не подвергалась опасности механических повреждений.

Оставлю без комментариев…

Заключение

Итак, если вам проблематично сделать заземление ощутимо менее 30 Ом, то сделайте хотя бы не более 30 Ом, и вы впишитесь в нормативы. Однако, если есть возможность, доведите сопротивление хотя бы до 10 Ом.

Рассчитать конструкцию заземления и количество электродов заземлителя, подогнав её под нужное сопротивление, можно с помощью моих программ для Windows и для Android.

Версия для Windows выглядит так:

Калькулятор расчёта сопротивления (для Windows)

Версия для Android выглядит так:

Калькулятор расчёта сопротивления (для Android)

Скажу сразу, что для региона московской области и влажных суглинков, для заземления сопротивлением 30 Ом требуется всего один уголок с полкой 50 мм длиной 3 метра, верх которого заглублён на 0,5 метра, а для заземления сопротивлением 10 Ом в тех же условиях требуется 4 уголка с полкой 50 мм длиной 2,5 метра, установленных в линию с интервалом 2,5 метра, верх которых заглублён на 0,5 метра.

На этом всё. Я постарался раскрыть тему максимально исчерпывающе. Ставьте лайки, если статья понравилась, и пишите комментарии не только с критикой. Мне нужна также и ваша поддержка.

Делитесь также этой статьёй в социальных сетях (соответствующие кнопочки рядом со статьёй есть в наличии) и, конечно, подписывайтесь на мой канал! Жду ваших отзывов! Удачи!

Переходное сопротивление

Переходное сопротивление заземления гост

Коммутацию электрических цепей невозможно представить без соединительных контактов. Даже если устройство напичкано электронными ключами, всё равно парочка механических контактных соединений найдётся. Случается так, что контакты греются. Это происходит из-за переходного сопротивления между ними.

Измерение переходного сопротивления

Определение

Переходное сопротивление (ПС) – это такое сопротивление, которое появляется там, где поверхности контактов соединяются друг с другом. Оно возникает при преодолении током границы токопроводящего соединения. В этом случае активное сопротивление резким скачком увеличивается при прохождении тока от одной поверхности к другой.

Причины возникновения явления

Контактное соединение коммутирует между собой участки электроцепи. Там, где происходит соединение, получается токопроводящее взаимное прикосновение, через которое ток из одного участка цепи переходит в другой.

Обычное наложение поверхностей не выполняет качественного соединения. Это связано с тем, что реальные поверхности – это неровности, имеющие выступы и углубления.

При достаточном увеличении изображения можно это наблюдать даже на отшлифованных плоскостях.

Пятно контакта под микроскопом

Внимание! На практике получается, что площадь реального прикосновения гораздо меньше всей площади контакта.

Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники.

Микроструктура электрического контакта

От чего зависит сопротивление

Эквивалентное сопротивление

На величину ПС влияют следующие причины:

  • плотность тока в месте смыкания контактов;
  • сила, с которой сжимаются поверхности соединения;
  • материал, из которого изготовлены контакты;
  • уровень окисления металлических поверхностей.

Важно! Любое контактное соединение Rк является суммой пары сопротивлений: R (металла, из которого изготовлен контакт) и Rп (переходного) – Rп = R + Rк.

Факторы, влияющие на величину переходного сопротивления

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления.

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.

Результат нагрева места соединения

Методика измерения

Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.

Методы измерений следующие:

  • метод непосредственного отсчёта;
  • способ вольтметра-амперметра;
  • измерение статической нестабильности Rп.

При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.

Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы.

При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.

Схема измерительной установки

Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.

Расчёт результатов измерений выполняют по формуле:

Rп = UPV2/IPA,

где:

  • UPV2 – результат, полученный на вольтметре PV2, В;
  • IPA – ток, измеряемый амперметром PA, А.

Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.

Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку.

Необходимый результат получают, используя формулы на рис. ниже.

Формулы для расчёта результата методом статической нестабильности

Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).

Перечень приборов, применяемых для измерений

Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:

  • однонаправленным током;
  • двунаправленным током.

В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.

Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.

Образец протокола проверки

Зачем измерять переходное сопротивление (ПС)

Электрические установки (ЭУ), а также корпуса электродвигателей, генераторов, трансформаторов и других преобразователей необходимо заземлять. Присоединение заземляющего устройства к оборудованию и ЭУ выполняется болтовым соединением, которое так же имеет ПС.

Для надёжности срабатывания защитного отключения при коротком замыкании переменного тока на корпус ПС периодически должно проверяться.

Результаты тестирования ПС дают возможность понять, какова вероятность поражения человека током, есть ли опасность возгорания оборудования при повышении температуры на плохих контактах. Высокое ПС увеличивает время срабатывания защитного оборудования.

Как часто замерять ПС заземления

Заземление – это специальное соединение оборудования с заземляющим устройством (ЗУ).

ЗУ представляет собой устройство, состоящее из следующих элементов:

  • заземлителя (контура заземления);
  • шины заземления;
  • заземляющих проводников.

Проверку в полном объёме с вскрытием грунта, осмотром состояния заземлителей и соединяющих их проводников проводят 1 раз в 12 лет. Внеплановые проверки проводят после капитальных ремонтов, связанных с заземляющими элементами. Срок проверки и измерений ПС ЗУ назначается на основании рекомендаций организации, которая выполняла предыдущую проверку.

К сведению. Замеры рекомендовано производить в месяцы наибольшего промерзания или высыхания грунта.

Значение Rп, лежащее в пределах регламентируемых норм, обеспечивает стабильную работу коммутационных устройств. Это, в свою очередь, способствует бесперебойной и безопасной эксплуатации оборудования.

Переходное сопротивление заземления ГОСТ

Переходное сопротивление заземления гост

Оборудованное в доме заземление по правилам нуждается в проверке для подтверждения своей работоспособности. После завершения монтажных работ всю схему диагностируют на правильность и целостность соединения.

Одним из главных показателей эффективности защитного устройства любого строения является коэффициент сопротивления заземления. Эта величина обозначается как результат противодействия свободному растеканию электрического тока в слоях грунта, проходящего в почву через заземлитель.

Измеряется сопротивление заземления в Ом. В идеальном варианте величина должна быть равна нулю. При таком значении поглощение электрического тока землей было бы полным.

Но на практике добиться таких значений невозможно. Для надежной защиты электрических сетей домового владения от перенапряжения и людей от поражения током допустимым является значение в 0,5 Ом.

Это конечное общее значение для всего заземляющего устройства.

Но схема защиты состоит из множества соединенных между собой элементов.

В случае повреждения, окисления или распайки швов в точках соединения расчетная величина в 0,5 Ом может быть значительно превышена, что уменьшает эффективность всей системы защиты.

При большом количестве потребителей, а, следовательно, и наличии множества точек соединения в цепи заземления, риск превышения предельных значений становится еще больше.

В местах стыковки деталей заземления измеряют переходное сопротивление. Максимальным значением, которое допустимо для контактного соединения защитного проводника, является величина в 0, 05 Ом.

Числовое значение большее от этой цифры свидетельствует о неисправности связей и обязывает незамедлительно устранить неполадки, потому как повышенное общее сопротивление заземления делает систему защиты полностью бесполезной.

Измерение металлосвязей

Для удобства электрики называют совокупность деталей заземляющего устройства от электроприбора до заземляющего контура металлосвязью.

Следовательно, проверку целостности и работоспособности всей цепи принято именовать проверкой металлосвязи. Заключается она в ряде действий со стороны исполнителя.

Ревизии подвергаются все соединения от главной шины на электрощите и до конечной точки питания электроприборов, то есть до розеток.

Диагностика контактных соединений проводится через:

  • визуальный осмотр узлов;
  • простукивание сварных швов;
  • аппаратное измерение значений переходного сопротивления.

Последний показатель является определяющим, и дает самое полное представление о работе всей заземляющей системы. Значение на любом исправном участке конструкции не должно быть большим, чем 0, 05 Ом. Для систем молниезащиты этот показатель должен быть равен 0, 03 Ом.

Профессионалы для измерений применяют высокоточную измерительную аппаратуру различной конструкции.

В домашних условиях в качестве измерителя можно пользоваться любым устройством, позволяющим замерять малые сопротивления. Чувствительность прибора должна быть достаточной, чтобы реагировать в диапазоне 0, 01 Ом.

При выявлении узлов с превышением нормативных значений, стоит искать и устранять неполадки в прилегающей к ним зоне. Может понадобиться протяжка и очистка контактных соединений от грязи и пыли. Дополнительно следует проверить качество изоляции проводников или наличие / отсутствие на их поверхности разрывов.

Как корректировать показатели сопротивление заземления

Чтобы достичь оптимальных для эксплуатации заземляющих устройств показателей сопротивления в собственном домовладении можно прибегнуть к доступным методам повышения эффективности их работы.

Для уменьшения сопротивления на участке стержень — грунт и увеличения общей функциональности установки сегодня применяют ряд природных и синтетических заполнителей, которые укладывают в скважины вместе с элементами заземлителя.

Самым простым вариантом окажется добавление в почву поваренной соли.

Такая засыпка, смешиваясь с подпочвенной влагой, превращается в электролит, что значительно повышает электропроводность окружающего заземлитель грунта.

Зимой она минимизирует вероятность образования наледи на стержнях и не дает долго грунту замерзнуть.

Такой заполнитель часто используют в регионах с холодным, суровым климатом, где он дает прекрасные результаты.

Однако со временем грунтовые воды вымывают соли из почвы и полезное действие засыпки медленно, но верно уменьшается.

Добавление соли в каменистых почвах абсолютно не рентабельно, так, как действие ее будет кратковременным.

Решить проблему увеличения электропроводности почвы можно выемкой ее части возле стержней с последующей заменой на глиносодержащие грунты.

Хорош метод тем, что глина не вымывается со временем и всегда остается возле стержней, но она же имеет свойство сильно увеличиваться в объеме при повышении влажности в почве, например, после сезона дождей.

В сухой период, наоборот, сильно пересыхает. От этого образуются воздушные зазоры, которые  сводят к минимуму эффективность такой засыпки.

Засыпки из угольной смеси также используют в качестве пристрежневого заполнителя. У углей хороший коэффициент электропроводности.

Такие составы плохо впитывают и удерживают влагу, потому в засушливых районах их применение не оправдано, но они отлично подойдут для местности с постоянным, умеренным климатом и частыми осадками.

При максимальной однородности фракций колебания таких показателей, как сопротивление заземления будут незначительными.

Статья была полезной? Оцени и поделись ей в соц. сетях:
(: 1 , 5,00 из 5)
 Loading …

Источник: http://ExpertElektrik.ru/soprotivlenie-zazemleniya.html

Что такое сопротивление заземления

Основной характеристикой заземляющего защитного устройства является сопротивление.

Сопротивление заземления включает в себя сопротивление грунта, проходящего через него тока, сопротивление заземлителя и сопротивление проводников.

Две последние величины зачастую имеют малые значения по сравнению с сопротивлением растекания тока.

Заземление, которое проходит в доме требует проверки, для удостоверения в своей исправности. После окончания работ по монтажу заземления, вся защитная линия подвергается тщательному осмотру и диагностики на предмет невредимости и правильности соединения.

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ).

Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф.

Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления. Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью.

В практическом плане такого показателя добиться невозможно.

Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.