Модуль пельтье как генератор электрической энергии

Как сделать своими руками генератор из элементов Пельтье

Модуль пельтье как генератор электрической энергии

Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы.

Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед.

Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.

  • Как изготовить элемент Пельтье своими руками?
  • Изготовление элемента Пельтье из диодов
  • Как устроен элемент Пельте?
  • Особенности элемента Пельтье
  • Формульное отображение
  • Генераторный режим элемента Пельтье
  • Переносная термоэлектрическая печка с генераторным режимом

Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение.

Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.

В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.

Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:

  • переносные холодильники;
  • автомобильные кондиционеры;
  • портативные охладители;
  • фотоаппараты, телескопы и многое другое.

Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах.

Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции.

Как изготовить элемент Пельтье своими руками?

Многих интересует вопрос, что такое Пельтье элемент своими руками, как сделать его в домашних условиях? Для этого потребуется высокоточное дозированное добавление разных веществ и материалов.

Изготовить в домашних условиях подобное устройство невозможно, потому что требуется иметь технологии и обладать необходимыми методами обработки металлов. Также требуются особо чистые материалы в таких же лабораториях, чего в домашних условиях добиться невозможно.

Поэтому на вопрос, как сделать термоэлектрический модуль Пельтье, можно ответить однозначно. Никак. Но для построения эффективной системы охлаждения вполне достаточно имеющихся навыков.

Изготовление элемента Пельтье из диодов

Существует мнение о том, что можно сделать термоэлектрический модуль на диодах. Дело в том, что каждая пара разнородных полупроводников – это два материала с p и n -проводимостями. А диод как раз таковым и является.

Чтобы выявить изменение проводимости при нагреве, необходимо выбирать определенные элементы. Но для получения низкой температуры на поверхности устройства никакие диоды не помогут. При подаче большого тока можно добиться лишь разогрева.

Радиолюбители используют в качестве датчика температуры диоды малой мощности в стеклянном корпусе. При подключении их в обратном направлении и разогреве переход начинает открываться и пропускать ток в обратном направлении. Но при этом вырабатывать электричество он не будет.

Как устроен элемент Пельте?

Термоэлектрический модуль Пельтье в упрощенном виде представляет собой пару пластин из разных металлов, которыми могут быть висмут, сурьма, теллур или селен. Между ними расположена пара полупроводников с разной проводимостью n и p -типа.

Все образованные разными металлами термоэлектрические пары соединены последовательно в единую цепь.

В результате образуется своего рода матрица из большого количества отдельных термопар, расположенных между двумя керамическими пластинами.

Образованный термопарами термоэлектрический модуль изготовлен в едином корпусе небольших размеров. При их последовательном или параллельном соединении можно добиться усиления эффекта охлаждения или выработки электрической энергии.

В режиме охладителя положительный вывод матрицы подключается к первой паре с проводником n -типа, отрицательный контакт подведен к проводникам p -типа. В качестве внешних обкладок используется специальная керамика, изготовленная на основе оксида и нитрида алюминия.

Это обеспечивает наилучшие показатели теплоотдачи на обеих сторон как при высоких, так и при низких температурах.

Число термопар в модуле ничем не ограничено и может быть до нескольких сотен. Чем их больше, тем лучше ощущается эффект охлаждения. Для повышения эффективности работы элемента Пельтье к его холодной стороне крепится радиатор с наибольшей площадью теплоотдачи. Разница в температуре между обкладками должна составлять не менее двух десятков градусов.

При подаче напряжения на обкладки одна из сторон становится горячей, а другая холодной. При смене полярности питающего напряжения температура пластин меняется местами.

Учитывая сложность и технологичность, сделать своими руками термоэлектрический элемент не представляется возможным. Но все же встречаются умельцы, которые предлагают свои разработки. Эффект наблюдается, но для повышения КПД без специальной исследовательской лаборатории получить невозможно. Даже можно найти видео по этой теме с пошаговым руководством.

Особенности элемента Пельтье

К особенностям элемента на основе биметаллических пар следует отнести:

  • Компактность. По сравнению с термоэлектрическим эффектом, которым обладает устройство, элемент Пельтье имеет незначительные габариты, но при этом позволяет на десятки градусов понизить температуру микропроцессора, что существенно упрощает системы охлаждения.
  • Не требует использования вентиляторов. Благодаря отсутствию движущихся и вращающихся компонентов все устройство не создает лишнего шума и помех, которые могут сильно повлиять на работу компонентов.
  • Благодаря каскадному соединению нескольких термоэлементов можно добиться повышенной эффективности охлаждения процессора с минимальными затратами.
  • Кроме охладителя, элемент Пельтье можно также использовать в качестве устройства экстренного нагрева, если поменять полярность на обкладках.

Формульное отображение

Эффект Пельтье заключается в протекании тока через контакт двух металлов с разной проводимостью. В результате выделяется тепло или холод, что зависит от направления протекания тока.

В формульном выражении эффект Пельтье можно изобразить:

Q п=П12 j , где П12 – это коэффициент Пельтье. Показатель зависит от типа используемого металла, его термоэлектрических свойств.

Кроме преимуществ, в устройстве можно выделить и некоторые недостатки, к которым следует отнести:

Невысокий КПД. Для того чтобы получить значительный перепад температур, необходимо к обкладкам подводить достаточно большой ток.

Для эффективного отвода тепловой энергии необходимо предусматривать радиатор.

Генераторный режим элемента Пельтье

Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.

Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:

  • зарядки мобильных устройств;
  • питания светодиодного освещения;
  • изготовления автономного радиоприемника и прочих целей.

По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.

Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение.

Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем.

В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.

Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.

Переносная термоэлектрическая печка с генераторным режимом

Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье.

Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров.

Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.

Что такое элемент Пельтье и как его сделать своими руками?

Модуль пельтье как генератор электрической энергии

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Сумка-холодильник на элементах Пельтье, нет компрессора, не нуждается во фреоне или других хладагентах

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.

Устройство модульного элемента Пельтье

Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3).

Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля.

Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.

Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
  • максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.

Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Термоэлектрический автохолодильник установленный в салоне автомобиля

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву.

Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником.

К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии.

Тем не менее,  термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов.

Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.

Термоэлектрический генератор B25-12 (М) на 12 вольт, мощностью 25 ватт

Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров.

Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна.

Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.

Термоэлектрический кулер Армада

Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело — охладить небольшой объем холодильной камеры, другое — помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.

Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.

Простой и недорогой китайский осушитель воздуха на элементах Пельтье

Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный — к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.

Схема подключения самодельного термогенератора

Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.

Принципиальная схема преобразователя напряжения

На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств.

Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой.

В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Модуль пельтье как генератор электрической энергии – Строим и ремонтируем

Модуль пельтье как генератор электрической энергии

> Генераторы > Термоэлектрический генератор

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта.

На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом.

При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния. 

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор. Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество.

При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах.

Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-4000С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Термоэлектрический генератор

Модуль пельтье как генератор электрической энергии

Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например).

С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий.

Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).

Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Разнообразие модулей «Пельтье»

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).

Пограничные явления в зонах Пельтье

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Какой генератор потянет инверторный сварочный аппарат

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Комплект необходимых деталей

Генератор на неодимовых магнитах

Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:

  • Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
  • Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
  • Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).

Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.

Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.

Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.

В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.

Сборка

Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).

Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).

Самодельный термогенератор

Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях.

Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь.

По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.

В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.