Как выбрать трансформатор тока по мощности

Выбор трансформаторов тока: критерии, расчет, описание, виды, схемы

Как выбрать трансформатор тока по мощности

Номинальная работа релейной аппаратуры, модулей управления, измерительных приборов в силовых цепях энергетических установок обеспечивается с помощью трансформаторов тока. Выбор такого оборудования зависит от многих параметров и значений, помочь познакомится с которыми, осветить общие принципы действия, призвана данная статья.

Описание и принцип действия

Трансформатор тока – электромагнитное преобразовательное устройство, конструктивно, состоящее из:

  • цельный магнитопровод;
  • две обмотки, обязательно изолированные между собой и от земли (первичная и вторичная);
  • пластиковый запаянный неразборный корпус;
  • контактные клеммы для подключения прибора для измерений;
  • крепежные элементы для монтажа прибора;
  • табличка на корпусе, бумажный паспорт.

Обмотки преобразователя делятся между собой на первичную и вторичную, включаются в энергетическую цепь строго по определенным правилам.

Первичная обмотка подключается к электрической цепи последовательно (рассекая токопровод). Вторичная обмотка замкнута на определенную нагрузку измерительных элементов, релейной аппаратуры и автоматики. Она пропускает через себя величину тока, которая пропорциональна токовому значению первичной обмотки.

Принцип действия любого из них основан на законе электромагнитной индукции, действующий в равной степени в электрических и магнитных полях электрических машин и механизмов.

Его суть – преобразование величины тока, протекающего через силовую цепь энергетической установки, к которой подключается первичная обмотка трансформатора тока с определенным количеством витков, во вторичное пониженное значение тока, соблюдая при этом пропорциональность значения.

Эта пропорциональная величина электротока на выходных клеммах вторичной обмотки трансформатора необходима для нормальной работы измерительной, релейной аппаратуры, приборов учета электроэнергии в системах силовых энергетических установках до и выше 1000 вольт.

Прослеживается прямая зависимость номинальной работы всех измерительных систем, приборов контроля и управления от правильного выбора трансформаторов тока.



Классификация

Преобразователи, кроме описанных выше направлений функционирования, принято классифицировать по основным признакам, знание которых необходимо для их правильного выбора в различных силовых электроустановках.

Последовательные трансформаторы принято классифицировать по:

По роду установки

Класс измерительных токовых устройств делится на несколько вариантов общего или специального назначения:

  • Переносные – трансформаторы специального назначения, применяемые для контрольных измерений или испытаний в мобильных электротехнических лабораториях;
  • Накладные – устройства преобразования специального назначения, использующиеся на высоковольтных установках, наложением сверху проходных изоляторов цепей силового трансформатора сети;
  • Встроенные – измерительные трансформаторы специального типа, применяемые внутри различных электрических аппаратов и машин для преобразования величин внутренней цепи оборудования;
  • Внутренней установки – электротехнические устройства общего назначения применяемые на высоковольтных распределительных электросистемах, или силовых цепях низкого напряжение (400В);
  • Наружной установки – приборы преобразования общего назначения, применяемые открытых распределительных сетях высокого напряжения (свыше 1000В).

Точное определение оборудования на участке цепи, к которым будут подключены последовательные преобразователи становится одним из важных критериев их выбора.

По способу установки

Видовые различия корпусов последовательных трансформаторов электрической сети разделяет их по классу монтажа на:

  • Проходные – играют роль проходного изолятора сквозь определенное препятствие в системе электроустановки. Выводы первичных обмоток у них всегда расположен сверху, другой снизу;
  • Опорные – конструктивно имеют расположение всех первичных выводов на одной стороне. Их установка производится всегда на ровную опорную поверхность.

Правильное определение типа монтажа измерительного прибора для преобразования тока не допустит ошибок дальнейшего проектирования новой энергетической системы или ремонте уже созданной установки.

По типу изоляции

Группы измерительных приборов преобразования имеют различия в составе материала изоляции своих обмоток и корпуса, делятся на несколько основных:

  • Твердая – тип сухой изоляцией в виде фарфора, бакелита и подобных материалов;
  • Вязкая – изоляция, полученная путем заливки различным компаундом.
  • Смешанная – использование в виде изолирующего материала бумажно-масляных элементов;
  • Газовая – изолирование первичной от вторичной обмотки проводится воздушным зазором.

Изоляционный материал оборудования выбирается от типа электроустановок, где они применяются. Он зависит и от величины номинального напряжения на участке установки приборов, климатических условий, где будет эксплуатироваться распределительное устройство и других факторов.

По количеству ступеней трансформации

Трансформаторы делятся на два основных типа в этом разрезе классификации:

  • Одноступенчатые – такие устройства имеют одну первичную и одну вторичную обмотку в устройстве, один неизменяемый коэффициент трансформации;
  • Многоступенчатые – электромагнитный аппараты каскадного вида, устройство которых содержит или возможность изменения числа витков первичной или вторичной обмотки, или содержит сразу несколько вторичных обмоток с дифферентом их числа витков. Эта конструкция позволяет иметь несколько коэффициентов трансформации в одном устройстве;

Первый класс трансформаторов наиболее распространен в применении энергетических установок общего назначения. Второй тип применяется в специализированных участках распределительных сетей по необходимости.

По количеству вторичных обмоток

Соответственно, исходя из количества ступеней трансформации приборы делятся на:

  • С одной вторичной обмоткой;
  • С двумя и более вторичными обмотками.

Основной вид трансформаторов в таком делении относит первые его вид к приборам общего назначения, второй к типу специального назначения.

По назначению

Основное назначение этого электромагнитного прибора – трансформация тока из одной величины в другую. Существует два основных направления, использования трансформаторов:

  • Для измерений – передача измерительных параметров приборам, показания которых снимает персонал электроустановки с целью анализа работы энергетических установок высокого напряжения (>1000В). Первичная обмотка трансформатора тока включается в разрыв энергетической цепи, а к его вторичной обмотке подключается требуемый измерительный прибор, типа амперметра, обмоток ваттметров или счетчиков учета электроэнергии. Их монтаж производится в энергетических установках, где невозможно прямое подключение измерительной аппаратуры, обмоток электросчетчиков напрямую, но необходимо при этом их нормальное функционирование.
  • Для защиты – передача измерительной информации устройствам защиты, или любым модулям управления энергетической системы, в состав которой они включены. Обеспечивает изолированную работу этих приборов в высоковольтных установках или силовых цепях с напряжением 400В. Изоляция реле и контрольных приборов от первичной цепи установки обеспечивает безопасную доступность к таким модулям обслуживающего персонала для их ремонта и эксплуатации.

Правильный выбор трансформатора тока по ГОСТу

Как выбрать трансформатор тока по мощности

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу.

Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд – ударный ток короткого замыкания

kу – ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях – 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода.

Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт – полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф – однофазное, двухфазное, трехфазное).

В таблице выше:

zр – сопротивление реле

rпер – переходное сопротивление контактов

rпр – сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди – 57, алюминия – 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета – проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%.

Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит.

Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить – а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений.

Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго.

Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не более 40% от максимального тока счетчика, а при минимальной – не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений – 0,4; 6,3; 10,5. И последние три столбца – это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы – инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят.

Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей.

Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Последние статьи

Расшифровка маркировок кабелей из СПЭ, БПИ и ПВХ

Чтобы сохранить документ в ворде нажми ctrl+s

Испытание трансформаторного масла на пробой

Самое популярное

Единицы измерения физвеличин

Расчет трансформатора тока: пусковой и номинальный ток, пример на 10 кВ

Как выбрать трансформатор тока по мощности

Суммарный нагрузочный ток на линию жилого, коммерческого объекта или предприятия в некоторых случаях может превышать ее фактические возможности. Правильный расчет трансформатора тока поможет обеспечить качество линейного преобразования, контроль и защиту электросети.

Причины для установки токовых трансформаторов

Трансформатор тока РТП-58

Устройство предназначено для трансформации первичного значения тока до безопасного для сети. Трансформаторы также эксплуатируются с целью:

  • разграничения низковольтной учетной аппаратуры и реле, подкинутых на вторичную обмотку, если в сети первичное высокое напряжение;
  • повышения или понижения показателей напряжения;
  • замера состояния электросети и параметров переменного тока;
  • обеспечения безопасности ремонтных и диагностических работ;
  • быстрой активации релейной защиты при коротких замыканиях;
  • учета энергозатрат – с ними обычно совмещен электросчетчик.

Для измерения понадобится подключить ТТ в разрыв провода, а на вторичную отметку подсоединить вольтметр или амперметр, совмещенный с резистором.

Разновидности трансформаторов тока

Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.

Назначение

Существуют такие трансформаторы:

  • измерительные – замеряют параметры цепи;
  • защитные – предотвращают перегрузки, выход оборудования из строя;
  • промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты;
  • лабораторные – отличаются высокой точностью.

У лабораторных моделей больше коэффициентов преобразования.

Тип монтажа

Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.

Конструкция первичной обмотки

Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.

Тип изоляции

Бывают следующие преобразователи:

  • сухая изоляция – на основе литой эпоксидки, фарфора или бакелита;
  • бумажно-масляная – стандартная или конденсаторная;
  • газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением;
  • компаундные – внутри находится заливка из термоактивной и термопластичной смолой.

Компаунд имеет самые высокие показатели влагостойкости.

В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.

Класс точности

Класс точности токового трансформатора прописан в ГОСТ 7746-2001 и зависит от его назначения, а также параметров первичного тока и вторичной нагрузки:

  • В условиях малого сопротивления происходит почти полное шунтирование намагниченной ветви. Прибор работает с большой погрешностью.
  • При повышении сопротивления также увеличивается погрешность. Причина – функционирование устройства на участке насыщения.
  • При минимальном номинале первичного тока трансформатор работает в нижней части намагниченной кривой, при максимальном – на участке насыщения.

Точный подбор трансформатора по классу точности можно произвести на основе таблицы.

Класс точностиНоминал первичного тока в %Предел вторичной нагрузки в %
0,15, 20, 100-20025-100
0,2
0,2 S1,5, 20, 100, 120
0,55, 20, 100, 120
0,5 S1, 5, 20, 100, 120
15, 20, 100-120
350-12050-100
5
10

Для устройств защиты класс точности также определяется по таблице.

Класс точностиПредельная погрешностьПроцент предельной вторичной нагрузки
тепловаяугловая
минср
±1±60±1,85
10Р±3Норма отсутствует10

Для энергоучета применяются модели с классом точности 0,2S – 0,5, для амперметров с минимальной чувствительностью – с 1-м или 3-м, для релейной защиты – 5P и 10Р.

Особенности выбора

В процессе выбора трансформатора тока необходимо руководствоваться базовыми параметрами:

  • Номинал сетевого напряжения. Номинальный показатель должен превышать или быть равным рабочему напряжению.
  • Ток первичной и вторичной обмотки. Первый показатель зависит от коэффициента трансформации, второй – зависит от того, какой счетчик.
  • Коэффициент преобразования. Подбирается по нагрузке в аварийных случаях, но ПУЭ устанавливают необходимость монтажа устройств с коэффициентом, большим, чем номинальный.
  • Класс точности. Зависит от целевого использования счетчика. На коммерческом предприятии оправданы приборы 0,5S, в частном доме – 1S.

Конструктивное исполнение определяется типом счетчика. Для моделей до 18 кВ подойдет однофазный или трехфазный аппарат. Если значение больше 18 кВ, используется трансформатор на одну фазу.

Подбор токового трансформатора для организации релейной защиты

Релейный токовый трансформатор отличается классом точности 10Р и 5Р. В ПУЭ установлено, что его погрешность не должна быть более 10 % по току и 7 градусов по углу. При превышении погрешности устанавливается дополнительное оборудование.

В нормальных условиях трансформаторное реле определяет тип поломки (низкое напряжение, повышенный/пониженный ток или частота). После измерения параметров и обнаружения отклонений активируется защита – сеть обесточивается.

Нюансы выбора устройств для цепи учета

К цепи учета для корректности замеров можно подключать приборы с классом точности не более 0,5(S). При наличии колебаний и аварий графики протекания тока и напряжения бывают некорректными. Несоблюдение класса точности может привести к завышению показателей счетчика.

В п. 1.5.17 ПУЭ установлено, что при завышенном коэффициенте трансформатор для цепи учета должен иметь вторичный ток:

  • при максимальной нагрузке – не более 40 %;
  • при минимальной нагрузке – не более 5 %;
  • класс точности – от 25 до 100 % от номинала.

Коэффициент ТТ по мощности бывает от 1 до 5 % первички.

Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью

Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.

При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения.  Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.

Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:

  • уменьшения показателей рабочей индукции;
  • подключения в сети устройств, демпфирующих сопротивление;
  • создания трехфазного устройства с общей магнитной пятистержневой системой;
  • эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
  • заземления нейтрали посредством реактора-токоограничителя.

Простейший вариант – использовать специальные обмотки или релейные схемы.

Расчет трансформатора тока по мощности

Токовый трансформатор ставится на 3 жилы провода, но модели с классом точности 0,5S, где одно кольцо идет на одну фазу, можно подключать к одножильному кабелю. Перед установкой прибора производится его расчет.

Пример расчета на 10 кВ

Модели на 10 кВ подходят для коммерческого учета энергии. Для вычислений можно использовать онлайн-программу – калькулятор. После ввода данных в поля и нажатия кнопки расчета появится нужная информация.

Если программы нет, рассчитать параметры устройства можно самостоятельно. Понадобится перевести трехсекундный ток термической стойкости в односекундный. Для этого используется формула I3с=I1с/1,732.

Сложность применения данного аппарата – минимальный, около 10 А, силовой ток цепи.

Трансформаторы тока, устанавливаемые на производстве или в жилом многоквартирном доме, самостоятельно не рассчитываются. Понадобится обратиться в компанию энергоснабжения для получения ТУ с моделью узла учета и типом устройства, номиналом автоматов. Это исключает сложности самостоятельных вычислений.

https://

Выбор коэффициента трансформации измерительных трансформаторов тока 6-10 кВ

Как выбрать трансформатор тока по мощности

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО – везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока.

Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение.

В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже – 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5.

Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика – в “Правилах устройсва электроустановок” (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют “трансформаторами с завышенным коэффициентом трансформации” и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети.

Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции.

Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом – 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации – 15/5, расчетный уровень рабочего тока – 25% от максимального, ток во вторичной обмотке трансформатора – 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ – 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение – 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Как выбрать трансформатор тока для счетчика: таблица и формулы

Как выбрать трансформатор тока по мощности

При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

  • Разновидность устройств
  • Правила выбора

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части.

В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр.

Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1.

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  • Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  • Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  • Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  • Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  • При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  • Расчет мощности ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Источник:https://samelectrik.ru/pravilnyj-vybor-transformatora-toka-dlya-schetchika.html

Выбор трансформаторов тока. Различия и классификация

Как выбрать трансформатор тока по мощности

Трансформаторы тока служат для измерения характеристик в пределах значений номинального напряжения (Uном) от 0,66 до 750 кВ.

Устройства служат для изменения параметров тока до показателей удобных для производства измерений с последующей передачей информативного сигнала измерения приборам, работающим в релейных цепях защиты.

Приборы служат для выполнения функций по измерению электрической энергии, защиты от воздействий токов КЗ и других неисправностей, автоматики и управления в электроцепях переменного тока промышленной частоты 50 – 60 Гц.

Выбор трансформатора тока

При решении вопроса, как выбрать трансформатор тока, прежде всего, необходимо руководствоваться требованиями по установке устройства.

Классификация трансформаторов тока

Трансформаторы подразделяются на классы по роду установки, в зависимости от места нахождения устройства:

  1. Установка ТТ в ОРУ.
  2. УстановкиТТ в ЗРУ.
  3. Для работы внутри оболочек устройстви внутри масляной или газовой среды,например, внутри высоковольтных масляных или элегазовых выключателей.
  4. Специальная установка.

По способу установки, зависящей то конструктивной особенности устройства:

  1. Опорные, для монтажа на ровной опорной поверхности;
  2. Проходные ТТ находятся на шинопроводах в комплексных распределительных устройствах, используются в качестве проходного изолятора;
  3. Шинные –особенность этого трансформатора заключается в том, что в роли первичной обмоткивыступает шина РУ,которая пропущена через окно трансформатора, устройство крепиться на шине специальными винтами на планке;
  4. Встроенные используются для установки в силовых трансформаторах, баковых выключателях или токопроводах;
  5. Разъемные, предназначены для быстрой установки на шинах или кабелях без отключения токовой цепи.

По типу изоляции:

  1. Литая изоляция;
  2. Исполнение в пластмассовом корпусе;
  3. Применение твердой изоляции, с использованием фарфора, бакелита, полимеров, эпоксидной смолы;
  4. Вязкая изоляция из заливочных обволакивающих компаундов;
  5. Маслонаполненные;
  6. Газонаполненные,применяемая для трансформаторов, установленных на высоких и сверхвысоких напряжениях.
  7. Смешанная изоляция, (бумажно-масляная), ресурс бумажной изоляции даже после 40 лет без эксплуатации может оставаться очень большим.

Недостаточная защита трансформатора может привести к конденсированнию влаги на его дне, влажность может достичь опасных значений, приводящих к электрическому или тепловому пробою.

В зависимости от количества ступеней трансформации:

  1. Одноступенчатые (один коэффициент трансформации)
  2. Многоступенчатые или каскадные (несколько коэффициентов трансформации)

По количеству вторичных обмоток:

  1. Наличие одной вторичной обмотки.
  2. Существование нескольких вторичных обмоток.

По функциональному назначению вторичной обмотки:

  1. Для измерения или учета.
  2. Для выполнения защитных функций.
  3. Для измерения и защиты.
  4. Для выполнения измерений в различных переходных режимах.

По количеству коэффициентов трансформации:

  1. Наличие одного коэффициента трансформации.
  2. Несколько коэффициентов трансформации, полученных после изменения числа витков в обмотках или при наличии нескольких вторичных обмоток.

Трансформаторы тока различаются по классу напряжения:

Методы преобразования:

  1. Электромагнитные.
  2. Оптико-электронные.

По типу изоляции обмоток:

  1. Твердая изоляция.
  2. Газовая изоляция

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Таблица №1. Типы трансформаторов тока

Класс точности трансформатора тока

При правильном выборе трансформатора тока нужно, прежде всего, руководствоваться сферой измерения где будет применяться трансформатор тока, если ТТ, например, будет применяться для АИИС КУЭ для снятия показаний коммерческого учета, то он должен иметь высокий класс точности.

Погрешности ТТ прежде всего зависимы от габаритов и конструктивных особенностей магнитопровода, а также от количества витков и сечения провода обмотки. На погрешность в показаниях большое влияние оказывает материал, из которого изготовлен магнитопровод.

При использовании в современных системах коммерческого учета нашли применение ТТ с магнитопроводом, выполненным из нанокристаллических (аморфных) сплавов, ТТ приобретает высокий класс точности измерения 0.5, 0,5S. 0.2S, при малом значении первичного тока.

Аморфные сплавы при повышении класса точности ТТ способствуют увеличению максимальной мощности обмоток, улучшают защиту измерительных приборов, подключенных в цепь с трансформатором, сводят к нулю эффект старения, что позволяет сохранить характеристики устройства. Так получают точные и качественные изделия,которые гарантируют стабильное функционирование систем АИИС КУЭ.

Высокий класс точности создает наиболее узкий диапазон трансформаторных погрешностей.

Различие между классами точности 0,5. 0,2и 0,5S, 0.2S заключается в погрешности обмотки класса 0,5 или 0,2ниже 5% от номинального тока. В таком значении тока,выявляется недоучет электроэнергии, сокращаемый при использовании трансформаторов с классом точности S.

Для различного вида технических измерений, возможно, подключение трансформаторов с классом точности – 1. Для применения в подключении указывающих амперметров разрешается применение ТТ с классом точности – 3.

Как правильно выбрать трансформатор тока

Выбор трансформаторов тока производится, руководствуясь определенными значениями, это: напряжение сети, значения номинального первичного тока, мощность зависящая от нагрузочных показателей потребителя, коэффициент трансформации.

Выбор трансформаторов тока по напряжению

Номинальное значение напряжения (Uном ) ТТ выбирается большим или равным значению максимального рабочего напряжения Uуст.

Выбор трансформатора по первичному току

Значение( I1ном) номинального тока первичной обмотки должно быть выше или быть равным по значению(Iрабmax) рабочему расчетному установочному току высоковольтной линии отходящего от распредустройства. Расчет выбора трансформатора тока также зависит от Iкз, величины термического импульса Iкз в течении 1 сек, и термического импульса тока КЗ в течении 0,525 сек, по результатам срабатывания защит.

При выборе номинального тока трансформатора руководствуются необходимостью обеспечения требований по термической и динамической стойкости к Iкз

Выбор трансформатора тока по нагрузке

При малых номинальных токах и высоких номинальных кратковременных токах термической стойкости, трансформатор ограничен по мощности из-за своих размеров и максимальной магнитодвижущей силы.

При увеличении силы намагничивания вдвое, мощность увеличивается в четыре раза. Мощность ограничена зависимостью МДС от тока динамической стойкости.

Причина кроется в силовом воздействии электрического поля, которое в случае КЗ будет симметрировать витки первичной обмотки друг против друга. Мощность ограничена малыми габаритными размерами ТТ.

Расчет выбора трансформатора тока по мощности производится в зависимости сечения токопроводящего проводника и расчетной мощности.

Формула расчета в зависимости от сечения проводника

Rпр.=(Lпр.∙ρ)/Sпр.выбр

Где Sпр.выбр — выбранное сечение проводника, (мм2)

Расчет нагрузочной мощности определяется по формуле

Sрас.=I²ном∙(Rпр.+Rcч.+Rк )

Согласно ГОСТУ параметры ТТ по нагрузке, определяются для трансформаторов тока номинальной мощностью равной 5ВА и 10 ВА с нижним пределом устанавливаемым 3,75 ВА.

Таблица выбора трансформаторов тока

Выбор трансформатора тока по коэффициенту трансформации

Не допускается установка трансформатора тока, имеющего завышенный коэффициент трансформации.

В случае повышенного коэффициента разрешается ставить счетчики на приемном вводе потребителя. На силовых трансформаторах счетчики могут монтироваться со стороны низшего напряжения.

Наибольшим спросом пользуются трансформаторы, имеющие один коэффициент трансформации, он не изменяется на протяжении всего срока эксплуатации.

Примером коэффициентов трансформации считаются ТТ 150/5 (N-30); 600/5 (N-120); 1000/5(N-200); 100/1(N-100)

Олег Сединкин

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.