Как рассчитать тепловую мощность радиатора отопления

Расчет радиаторов отопления и необходимой тепловой мощности – Stroim24.info

Как рассчитать тепловую мощность радиатора отопления

Как выполнить расчет радиаторов отопления в квартире? Какое количество секций будет минимально необходимым при известной площади помещения?

О простых и относительно сложных способах расчета — эта статья.

Отложим в сторону газовый ключ и болгарку. Сегодня наш инструмент — калькулятор.

Дисклеймер

Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.

Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.

Общие положения

Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?

В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.

В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и электрокотлы для отопления частного дома снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.

Термостат не даст котлу потратить лишнее тепло.

Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.

Между прочим: помимо среднестатистических зимних температур, раз в несколько лет случаются экстремальные заморозки.

Есть подозрение, что в связи с глобальными климатическими изменениями они будут случаться все чаще, так что, выполняя расчет отопительных радиаторов, не бойтесь ошибиться в большую сторону.

Как рассчитать тепловую мощность отопительного прибора

Способ рассчитать мощность во многом зависит от того, о каком отопительном приборе идет речь.

  • Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности.Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.

Угадаете тепловую мощность прибора по его упаковке?

  • У большинства отопительных приборов от приличных производителей их тепловая мощность указывается в сопроводительной документации или на сайте изготовителя.Часто там можно обнаружить даже калькулятор расчета радиаторов отопления для определенного объема помещения и параметров отопительной системы.

Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.

Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.

Биметаллические радиаторы

Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.

Возьмем данные с сайта завода Большевик:

  • Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
  • Для 400-миллиметровой секции — 143 ватта.
  • 300 мм — 120 ватт.
  • 250 мм — 102 ватта.

Статья в тему:  Экономное отопление электричеством: возможно ли это

10 секций с полуметром между осями подводок дадут нам 1650 ватт тепла.

Алюминиевые радиаторы

Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):

  • Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
  • При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.

Стальные пластинчатые радиаторы

А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.

Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.

Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.

Схема учитывает габариты радиаторов и тип подключения.

Чугунные радиаторы

И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.

Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?

Расчет тепловой мощности

Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.

По площади

Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).

Уточнение: при расчете применяется коэффициент, зависящий от региона страны. Для южных районов он равен 0,7 — 0,9, для Дальнего Востока — 1,6, для Якутии и Чукотки — 2,0.

Чем ниже температура на улице, тем больше потери тепла.

Понятно, что метод дает весьма значительную погрешность:

  • Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
  • Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
  • Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.

Давайте все-таки применим метод для расчета количества чугунных секций радиаторов отопления в комнате размером 3х4 метра, находящейся в Краснодарском крае.

Площадь равна 3х4=12 м2.

Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.

При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.

Совет: в условиях Краснодарского края дельта температур между комнатой и батареей в 70С нереальна. Лучше устанавливать радиаторы как минимум с 30-процентным запасом.

Запас по тепловой мощности никогда не помешает. При необходимости можно просто прикрыть вентиля перед радиатором.

Статья в тему:  Зачем нужна регулировка

Простой расчет по объему

Не наш выбор.

Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.

Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.

Объем помещения равен 3х4х3,1=37,2 кубометра.

Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.

Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или биметаллического импортного радиатора отопления — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.

Уточненный расчет по объему

Более точный расчет систем отопления выполняется с учетом большего числа переменных:

  • Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
  • Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
  • У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…

Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.

Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.

Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.

Окно и дверь прибавят 300 ватт. 1488+300=1788.

Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.

Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.

К слову, в угловых комнатах отопительные приборы стоит монтировать на обе внешние стены.

Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!

Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…

«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.

Заключение

Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!

Поделитесь с друзьями в соц.сетях

23.10.201910.12.2019 – Stroim24

Расчета мощности стальных радиаторов отопления

Как рассчитать тепловую мощность радиатора отопления

/ Радиаторы / Таблица расчета мощности стальных радиаторов отопления

Сегодня потребительский рынок наполнен множеством моделей отопительных устройств, которые различаются по габаритам и показателям мощности. Среди них стоит выделить стальные радиаторы. Данные приборы довольно легкие, имеют привлекательный внешний вид и обладают хорошей теплоотдачей. Перед выбором модели необходимо произвести расчет мощности стальных радиаторов отопления по таблице.

Разновидности

Виды стальных радиаторов отопления

Рассмотрим стальные радиаторы панельного типа, которые различаются по габаритам и степени мощности. Устройства могут состоять из одной, двух или трех панелей. Другой важный элемент конструкции – оребрение (гофрированные металлические пластины).

Чтобы получить определенные показатели тепловой отдачи, в конструкции устройств используется несколько комбинаций панелей и оребрения.

Перед выбором наиболее подходящего устройства для качественного отопления помещения, необходимо ознакомиться с каждой разновидностью.

Основные типы стальных радиаторов

Стальные панельные батареи представлены следующими типами:

  • Тип 10. Здесь устройство оснащено только одной панелью. Такие радиаторы имеют легкий вес и самую низкую мощность.

Стальные радиаторы отопления тип 10

  • Тип 11. Состоят из одной панели и пластины оребрения. Батареи обладают чуть большим весом и габаритами, чем предыдущий тип, отличаются повышенными параметрами тепловой мощности.

Стальной панельный радиатор типа 11

  • Тип 21. В конструкции радиатора две панели, между которыми располагается гофрированная металлическая пластина.
  • Тип 22. Батарея состоит из двух панелей, а также двух пластин оребрения. По размерам устройство схоже с радиаторами 21-го типа, однако, по сравнению с ними, обладают большей тепловой мощностью.

Стальной панельный радиатор типа 22

  • Тип 33. Конструкция состоит из трех панелей. Данный класс – самый мощный по тепловой отдаче и самый большой по размерам. В его конструкции к трем панелям присоединены 3 пластины оребрения (отсюда и цифровое обозначение типа — 33).

Стальной панельный радиатор типа 33

Каждый из представленных типов может различаться по длине прибора и его высоте. На основании этих показателей и формируется тепловая мощность устройства. Самостоятельно рассчитать данный параметр невозможно.

Однако каждая модель панельного радиатора проходит соответствующие испытания производителем, поэтому все результаты заносятся в специальные таблицы.

По ним очень удобно подобрать подходящую батарею для отопления различных типов помещений.

Определение мощности

Для точного расчета тепловой мощности необходимо отталкиваться от показателей тепловых потерь помещения, в котором планируется установить эти устройства.

Таблица для расчета количества радиаторов на М2

Для обычных квартир можно руководствоваться СНиПом (Строительными нормами и правилами), в которых прописаны объемы тепла из расчета на 1м3 площади:

  • В панельных зданиях на 1м3 требуется 41Вт.
  • В кирпичных домах на 1м3 расходуется 34 Вт.

На основании данных норм можно выявить мощность стальных панельных радиаторов отопления.

В качестве примера, возьмем комнату в стандартном панельном доме с габаритами 3,2*3,5м и высотой потолков в 3 метра. Первым делом определим объем помещения: 3,2*3,5*3=33,6м3. Далее обратимся к нормам СНиП и найдем числовое значение, которое соответствует нашему примеру: 33,6*41=1377,6Вт. В результате, мы получили количество тепла, необходимое для обогрева комнаты.

Дополнительные параметры

Нормативные предписания СНиПа составлены для условий средней климатической зоны.

Параметры микроклимата в помещениях установленные СНиП

Чтобы произвести расчет в областях с более холодными зимними температурами, нужно скорректировать показатели при помощи коэффициэнтов:

  • до -10° C – 0,7;
  • -15° C – 0,9;
  • -20° C — 1,1;
  • -25° C — 1,3;
  • -30° C — 1,5.

При расчете тепловых потерь, нужно брать во внимание и количество стен, которые выходят наружу. Чем их больше, тем выше будут показатели теплопотерь помещения. К примеру, если в комнате одна наружная стена – применяем коэффициент 1,1. Если мы имеем две или три наружные стены, то коэффициент будет 1,2 и 1,3 соответственно.

Насколько сильно должна греть батарея

Рассмотрим пример. Допустим, в зимний период в регионе держится средняя температура -25° C, а в помещении расположены две наружных стены. Из расчетов мы получим: 1378 Вт*1,3*1,2=2149,68 Вт. Итоговый результат округляем до 2150 Вт. Дополнительно необходимо учитывать, какие помещения расположены на нижнем и верхнем этаже, из чего сделана кровля, каким материалом утеплялись стены.

Расчет радиаторов Kermi

Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.

Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка.

В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.

Радиатор Kermi Therm Х2 Plan-K

Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.

Пересчет мощности исходя из температурного режима

Однако данные в этой таблице прописаны для показателей 75/65/20, где 75° C – температура провода, 65° C – температура отвода, а 20° C – температура, которая поддерживается в помещении. На основе этих значений производится расчет (75+65)/2-20=50° C, в результате которого мы получаем дельту температур.

В том случае, если у вас иные системные параметры, потребуется перерасчет. Для этой цели в Kermi подготовили специальную таблицу, в которой указаны коэффициенты для корректировки.

С ее помощью можно осуществить более точный расчет мощности стальных радиаторов отопления по таблице, что позволит подобрать наиболее оптимальное устройство для обогрева конкретного помещения.

Рассмотрим низкотемпературную систему, показатели которой составляют 60/50/22, где 60° C – температура провода, 50° C – температура отвода, а 22° C – температура, поддерживаемая в помещении.

Вычисляем дельту температур по уже известной формуле: (60+50)/2-22=33° C. Затем смотрим в таблицу и находим температурные показатели проводимой/отводимой воды.

В клетке с поддерживаемой температурой помещения находим нужный коэффициент 1,73 (в таблицах отмечается зеленым цветом).

Далее берем количество тепловых потерь помещения и умножаем его на коэффициент: 2150 Вт*1,73=3719,5 Вт. После этого возвращаемся к таблице мощностей, чтобы посмотреть подходящие варианты. В таком случае выбор будет скромнее, поскольку для качественного обогрева потребуются гораздо более мощные радиаторы.

Теплоотдача радиаторов отопления: сравнение и способы расчета

Как рассчитать тепловую мощность радиатора отопления

Главным критерием выбора радиаторов отопления является их теплоотдача. Однако показатель мощности отопительного прибора зависит не только от материала изготовления, но и от формы, конструкции и развитости поверхности. Поэтому каждая модель имеет индивидуальный показатель.

В статье мы рассмотрим способы грамотного расчета необходимой мощности батарей, сравним показатели теплоотдачи различных видов и моделей радиаторов отопления, выделим лучшие и наиболее эффективные из них.

Что означает и как рассчитывается показатель теплоотдачи радиаторов отопления

Теплоотдача — это показатель, который обозначает, какое количество тепла радиатор передает воздуху за единицу времени, при определенной температуре теплоносителя в нем (как правило, согласно ГОСТ – при 70°С).

Также ее называют тепловой мощностью, измеряется она в Ваттах (Вт). Иногда в паспорте отопительного прибора можно встретить и обозначение «мощность теплового потока», единицами измерения которого являются кал/час: 1 Вт = 859,845 кал/час.

Учитывайте, что в характеристиках может быть указана теплоотдача как 1 секции прибора, так и радиатора в целом, если его продают комплектом из 4,6,8 или 10 секций. При мощности одной секции в 624 Вт, прибор из 4 секций будет иметь мощность 4*624= 2,496 кВт.

Нормы теплоотдачи для отопления помещения

Теплообмен настенного радиатора отопления.

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Пример: помещение дома в Подмосковье имеет площадь 34 м2, соответственно, требует 34/10 * 1,15 = 3,91 кВт мощности. Если помещение с такой же площадью относится к дому в северном регионе страны, где теплопотери в виду климата значительно выше, для его комфортного обогрева понадобятся радиаторы с теплоотдачей  34/10 * 1,4 * 1,15 = 5,474 кВт.

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;
  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

У каких радиаторов отопления самая высокая теплоотдача

Что касается характеристик металлов, то наименьшей теплоотдачей обладает сталь, а наибольшей –  биметалл (сочетание алюминия и стали).

МатериалТеплоотдача (Вт/м*К)
Сталь47
Чугун52
Алюминий202-236
Биметалл380

Однако это лишь свойства металлов, представляющие общую картину. Теплоотдача, в меньшей степени, но зависит и от межосевого расстояния, площади секции, технологии изготовления. Поэтому мы рекомендуем рассмотреть эффективность каждого вида радиатора в целом, а затем сравнить конкретные наиболее удачные модели, выбрав самые эффективные из них.

Биметаллические

Germanium NEO BM 350.

В среднем показатель теплоотдачи биметаллических радиаторов является самым высоким. В зависимости от модели – от 140 Вт до максимальной на рынке мощности в 280 Вт на 1 секцию (модель Sira RS 800). Представляют из себя сочетание стальных проводящих каналов и алюминиевого оребрения, быстро нагреваются и сразу же отдают тепло.

Приборы рассчитаны на рабочее давление системы до 35 атм. Даже самые простые модели имеют срок службы не менее 20 лет. Стоимость за секцию 395-2190 руб.

Алюминиевые

Fondital Vision Innovatium 500.

Близкими к биметаллическим являются показатели теплоотдачи алюминиевых радиаторов отопления, некоторые дорогостоящие модели могут иметь более высокую мощность и эффективность, чем простые биметаллические приборы.

В зависимости от модели тепловая мощность может быть в пределах от 130 Вт до 220,9 Вт на 1 секцию (модель Roca Dubal-80). При высокой эффективности, они, в сравнении с биметаллическими, имеют много эксплуатационных нюансов. При выборе необходимо обращать внимание на рабочее давление, иногда оно не превышает даже 10 атм.

Главным недостатком является необходимость поддержания определенной кислотности теплоносителя (воды), что сложно даже в частном доме, не говоря уже о квартире с центральным отоплением. В противном случае, уровень pH более 7,5 быстро разрушит приборы. Стоимость 1 элемента – от 350 до 1200 руб.

Стальные

Stelrad Compact 22-500.

Тепловая мощность стальных панельных батарей относительно небольшая, но оптимальная, особенно в соотношении цена-результат. Они быстро нагреваются, обладают лучшими конвекционными характеристиками (воздух прогревается заметно быстрее), но и быстро остывают. В зависимости от модели, теплоотдача равна 179-13 173 Вт (модель Kermi FTV 330930).

Показатель указывается для всего прибора (т.к. они не имеют секций), поэтому при выборе нужно обращать внимание на длину. Стоимость также имеет самый обширный диапазон – от  1300 до 60 000 руб за панель.

Чугунные

Модель МС-140.

Самую низкую теплоотдачу имеют чугунные радиаторы отопления – от 80 до 160 Вт на секцию (известные МС 140). Преимуществом и в то же время недостатком является низкая инерционность: прибор дольше других остывает, но это делает его неподходящим для точной регулировки климата автоматикой.

Чугунные батареи имеют большой объем теплоносителя и существенную массу. Однако чугун устойчив к любым перепадам давления в системе, загрязнениям теплоносителя, не поддается коррозии. Стоимость начинается от 500 рублей за секцию и может достигать 9 000 руб., если это декоративные иностранные высококачественные модели.

Сравнение теплоотдачи радиаторов отопления по совокупности характеристик: таблица

Материал изготовленияМодельНоминальная тепловая мощность 1 секции (Вт)Стоимость секции (руб.)Итог: стоимость 1 кВт тепловой мощности (руб.)
БиметаллическиеRifar Base 500 x4 500/1002047003 431,4
Sira Ali Metal 500 x41875602 994,7
Royal Thermo Vittoria 500 x41675903 532,9
ROMMER Optima Bm 500 x4160395,252 470,3
АлюминиевыеRifar Alum 500 x41835503 005,5
Global ISEO 500 x41815503 038,7
Royal Thermo Revolution 500 x4171497,52 909,4
ROMMER Al Optima 500 x41553592 316,1
ЧугунныеМЗОО МС-140М-500 x41605083 175
МС-140 — 500 x41604803 000
СтальныеKermi FKO 11 500 400459 (панель)2 069 (панель)4 507,6
Buderus Logatrend K-Profil 22 500 400730 (панель)2 300 (панель)3 150,7

Известно, что самая высокая теплоотдача у биметаллических радиаторов отопления, они имеют все положительные свойства алюминиевых, но за счет стальных труб могут быть установлены в любую систему. Однако мы рекомендуем обращать внимание не только на показатели теплоотдачи, а на стоимость 1 кВт мощности. Чем больший показатель теплового потока, тем дороже отопительный прибор, но приборы с повышенной мощностью не всегда оправдывают себя.

Мы рекомендуем ориентироваться на низкотемпературный режим отопления, при котором используются радиаторы больших размеров, а температура теплоносителя в них не превышает 60-70 градусов. Такая система более надежна и долговечна, имеет огромный запас мощности, а низкотемпературный режим не разлагает органическую пыль, которая находится в любом жилом помещении.

Опрос: на каких радиаторах отопления вы остановили выбор?

Влияние размещения и способа подключения радиаторов на теплообмен

Лучшим местом размещения радиатора является место под световыми проемами, поскольку через окно, каким бы утепленным оно не было, происходят наибольшие потери тепла. Кроме того, горячий воздух от отопительного прибора создает тепловую завесу: холодный воздух от окна не распространяется по помещению, улучшается циркуляция.

Изменение тепловой мощности радиатора в зависимости от размещения и наличия экрана.

Если вы решили скрыть радиаторы под экраны или декоративные панели, это приведет к потере мощности. Иногда к таким мерам прибегают, чтобы целенаправленно снизить силу теплового потока на 10-15%.

Снижение тепловой мощности при различных способах подключения.

Существенное влияние оказывает и способ подключения радиаторов:

  1. Двустороннее или одностороннее. Подвод труб с разных сторон помогает увеличить теплоотдачу батареи, при таком подключении мощность прибора соответствует заявленной максимальной. Однако конструктивно к радиаторам с менее, чем 20 секциями лучше подводить трубы с одной стороны.
  2. Верхнее или нижнее. Подача теплоносителя в верхнюю часть батареи, при отводе через нижнюю, оказывает минимальное влияние на теплопередачу. Подача снизу вверх снижает показатель на 20-22%.

Как увеличить показатели уже установленных батарей

Стоимость 45-150 руб.

Незаменимым элементом отопительной системы является клапан Маевского.

Во многих современных радиаторах он поставляется в комплекте, в противном случае его можно докупить и легко установить своими руками.

Устройство монтируется в верхнюю пробку радиатора, противоположную подводу теплоносителя и позволяет легко устранить завоздушенность, следствием которой является существенное снижение теплоотдачи.

Некоторые прибегают к «народному способу», устанавливая между батареей и стеной сделанные собственноручно теплоотражающие экраны из фольги или металла с гофрированными ребрами.

Наиболее эффективный метод – установка дополнительных секций, однако это необходимо производить только при полном отключении системы отопления и учитывать дополнительную нагрузку от добавляемых секций.

Как просто и точно произвести расчет мощности радиатора отопления?

Как рассчитать тепловую мощность радиатора отопления

На стартовом этапе проектирования нового здания или проведения с нуля ремонта в помещении обязательно требуется рассчитать необходимую мощность батарей.

В соответствии с полученным результатом определяется точное число радиаторов для полноценного обеспечения теплом дома или квартиры даже при максимальных зимних колебаниях температуры.

Существует несколько методов расчета.

ontakte

Odnoklassniki

При монтаже стандартных источников обогрева секционного типа не возникает сложностей, так как их мощность заранее указана среди остальных технических параметров.

При положении, когда фирма-изготовитель прописывает в характеристиках значение расхода теплоносителя, принято считать, что трата 1 литра этой жидкости в минуту равна 1 кВт мощности.

Важно! При рассмотрении различных вариантов батарей стоит помнить, что при одинаковых габаритах они имеют несовпадающие показатели мощности, так как исходный материал, варьируется от биметаллического до чугунного.

Для расчёта каждого типа радиаторов существует свой средний показатель мощности. Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

  • Чугун —145 Вт.
  • Биметалл —185 Вт.
  • Алюминий — 190 Вт.

Зачастую этот показатель отличается от вышеуказанных в силу того, что по высоте батареи отопления встречаются от 0,2 м до 0,6 м.

При нестандартных параметрах радиаторов отопления в методы расчёта теплового излучения вносятся корректировки.

Фото 1. Стальной радиатор для отопления модели Tesi 2 , дина секции 45 мм, производитель – «Irsap», Италия.

Чем ниже значение высоты источника обогрева (и, соответственно, его площадь), тем меньше показатель излучения тепла.

Внести корректировку в результат можно с помощью установленного коэффициента, полученного из пропорции существующей высоты радиатора к стандартному значению.

Как рассчитать тепловую мощность батарей

В зависимости от количества учтённых показателей они подразделяются на 2 типа.

Упрощённый метод

Он является обобщённым и широко применяется для самостоятельных непрофессиональных подсчётов.

Главный критерий, принимаемый во внимание при упрощенном способе расчета — это площадь. Устанавливается, что 100 Вт излучаемой энергии хватает на 1 кв. м.

Для полноценного обогрева всего помещения требуется произвести подсчёт по формуле: Q=S*100, где Q — искомая тепловая мощность, S — площадь комнаты (м2).

Подробная формула

Это обобщённый метод расчёта отопления для помещения, но уже с учётом всех возможных факторов, оказывающих влияние на окончательный результат. Вид итоговой формулы такой:

Q=(S*100)*a*b*c*d*e*f*g*h*i*j, где дополнительные составляющие элементы — это коэффициенты, определяемые в соответствии с точной степенью отдельного фактора:

  • a — число внешних стен в интересующем помещении.
  • b — ориентация комнаты относительно сторон света.
  • c —условия климата.
  • d —уровень утепления внешних стен.
  • e —высота потолков в помещении.
  • f —конструкционные особенности потолка и пола.
  • h —качество рам.
  • i —размер окон.
  • j —степень закрытости источника обогрева.
  • k —схема подключения батарей.

Факторы, влияющие на расчёт

На расчет мощности радиаторов отопления влияют следующие факторы.

Ориентация комнат по сторонам света

Принято считать, что если окна помещения выходят на юг или запад, то оно в достаточном количестве имеет солнечный свет, поэтому в эти двух случаях коэффициент «b» будет равен 1,0.

Добавление к нему в 10% требуется, если окна комнаты ориентированы на восток или север, так как солнце здесь практически не успевает обогреть помещение.

Справка! Для северных районов такой показатель берётся в размере 1,15.

Если комната выходит на наветренную сторону, то коэффициент для расчета увеличивается до b=1,20, при параллельном расположении относительно потоков ветра — 1,10.

Вам также будет интересно:

Их число напрямую определяется показателем «а». Так, если помещение имеет одну внешнюю стену, то он принимается равным 1,0, две — 1,2. Добавление каждой следующей стены ведёт к увеличению коэффициента тепловой отдачи на 10%.

Зависимость радиаторов от теплоизоляции

Сократить расходы на обогрев квартиры или дома позволит проведение грамотного утепления стен. Значение коэффициента «d» способствует увеличению или снижению тепловой мощности батарей отопления.

В зависимости от степени утепления внешней стены показатель бывает следующий:

  • Стандартное, d=1,0. Они нормальной или малой толщины и либо оштукатурены снаружи, либо имеют небольшой слой теплоизоляции.
  • При особом способе утепления d=0,85.
  • При недостаточной устойчивости к холодам —1,27.

При позволяющем пространстве допускается фиксировать слой теплоизоляции к внешней стене изнутри.

Климатические зоны

Этот фактор определяется низкими уровнями температур для различных регионов. Так c=1,0 при погоде до —20 °C.

Для областей с холодным климатом показатель будет следующим:

  • с=1,1 при температурном режиме до —25 °C.
  • с=1,3: до —35 °C.
  • с=1,5: ниже 35 °C.

Своя градация показателей и для тёплых регионов:

  • с=0,7: температура до —10 °C.
  • с=0,9: лёгкий мороз до —15 °C.

Высота помещения

Чем выше в строении уровень перекрытия, тем больше этой комнате требуется тепла.

В зависимости от показателя расстояния от потолка до пола определяется поправочный коэффициент:

  • е=1,0 при высоте до 2,7 м.
  • е=1,05 от 2,7 м до 3 м.
  • е=1,1 от 3 м до 3,5 м.
  • е=1,15 от 3,5 м до 4 м.
  • е=1,2 свыше 4 м.

Роль потолка и пола

Сохранению тепла в помещении также способствует его соприкосновение с потолочным перекрытием:

  • Коэффициент f=1,0 если есть чердак без утепления и отопления.
  • f=0,9 для чердака без обогрева, но с теплоизоляционным слоем.
  • f=0,8, если комната выше отапливаемая.

Пол без утепления определяет показатель f=1,4, с утеплением f=1,2.

Качество рам

Для расчёта мощности отопительных приборов важно учесть и этот фактор. Для оконной рамы с однокамерным стеклопакетом h=1,0, соответственно для двух— и трёхкамерного — h=0,85. Для старой рамы из дерева в расчёт принято брать h=1,27.

Размер окон

Показатель определяется соотношением площади оконных проёмов с квадратными метрами помещения. Обычно он равен от 0,2 до 0,3. Так коэффициент i= 1,0.

При полученном результате от 0,1 до 0,2 i=0,9 до 0,1 i=0,8.

Если размер окон выше стандарта (соотношение от 0,3 до 0,4), то i=1,1, а от 0,4 до 0,5 i=1,2.

Если окна панорамные, то целесообразно при каждом увеличении соотношения на 0,1 повышать i на 10%.

Для комнаты, в которой зимой регулярно используется балконная дверь, автоматически повышает i ещё на 30%.

Закрытость батареи

Минимальное ограждение радиатора отопления способствует более быстрому прогреву комнаты.

В стандартном случае, когда батарея отопления расположена под подоконником, коэффициент j=1,0.

В других случаях:

  • Полностью открытый прибор обогрева, j=0,9.
  • Источник отопления прикрыт настенным выступом горизонтального типа, j=1,07.
  • Батарея отопления закрыта кожухом, j=1,12.
  • Полностью закрытый радиатор отопления, j=1,2.

Способ подключения

Способов подключения радиаторов отопления несколько и каждый из них определяется показателем k:

  • Метод подключения радиаторов «по диагонали». Является стандартным, и k=1,0.
  • Подключение «с боковой стороны». Способ популярен из-за небольшой длины подводки, k=1,03.
  • Использование пластиковых труб по методу «снизу с двух сторон», k=1,13.
  • Решение «снизу, с одной стороны» является готовым, происходит подключение к 1 точке подающей трубы и обратки, k=1,28.

Важно! Иногда для повышения точности результатов применяют дополнительные поправочные коэффициенты.

Ознакомьтесь с видео, в котором рассказывается, как рассчитать мощность радиатора отопления.

Сокращённая формула расчёта отопительной мощности проста в применении, но не учитывает определённые особенности помещения. Для получения точного результата при расчете мощности радиаторов отопления важно принимать во внимание все имеющиеся факторы.

Оцени статью:

Будь первым!

Средняя оценка: 0 из 5.
Оценили: 0 читателей.

Поделись с друзьями!

ontakte

Odnoklassniki

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.