Как рассчитать мощность трансформатора по железу

Расчет трансформатора

Как рассчитать мощность трансформатора по железу

Силовой трансформатор является наиболее простым примером преобразования электрической энергии. Даже при условии постоянного совершенствования радиоэлектронных устройств и источников питания на их основе блоки питания на основе трансформаторов переменного напряжения не теряют актуальности.

Трансформаторы для блока питания имеют большие габариты и массу, работают в ограниченном диапазоне допустимого входного напряжения, но при этом очень просты в реализации, отличаются высокой надежностью и ремонтопригодностью.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо).

В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора.

Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Исходные данные

Способы расчёта различных конфигураций трансформаторов

Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:

  • Напряжение сети;
  • Напряжение и количество вторичных обмоток;
  • Токи потребления нагрузок.

Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.

Порядок расчета

Особенности применения и устройства сварочных трансформаторов

Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:

Pс= P1+P2+P3+…

Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:

P = U·I.

Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:

  • До 50 Вт – 0.6 (60%);
  • От 50 до 100 Вт – 0.7 (70%);
  • От 100 до 150 Вт – 0.8 (80%).

Более мощный трансформатор будет иметь КПД 0.85.

Таким образом, расчет габаритной мощности выглядит таким образом:

Рг = КПД∙Рс, где Рс – полная мощность.

На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:

S=√Рг.

Согласно данной формуле, искомая площадь сечения получается в квадратных сантиметрах. По полученным данным подбирают сердечник с близким или несколько большим значением сечения. Используя разборные сердечники из Ш и П образных пластин, можно в некоторых пределах изменять толщину набора, добавляя или убирая по несколько пластин.

Как определить мощность неизвестного трансформатора? Нужно возвести в квадрат площадь сердечника, выраженную в квадратных сантиметрах.

Обратите внимание! Поперечное сечение магнитопровода должно, по возможности, иметь приближенную к квадрату форму.

После выбора магнитопровода, рассчитываем намоточные данные. Имея в наличии магнитопровод и зная площадь его сечения, можно выполнить расчет обмоток трансформатора (количества витков в обмотках).

Принято за основу расчета брать количество витков, которые приходятся на 1 В напряжения, поскольку данное число одинаково для всех обмоток и зависит от характеристик магнитопровода и частоты напряжения питающей сети.

Полная формула, которая учитывает частоту сети, магнитную индукцию в сердечнике, имеет большую сложность и в расчетах практически никогда не применяется. Вместо этого используют упрощенный вариант, который учитывает лишь материал и конструкцию сердечника:

N=k/S, где k – коэффициент из следующего перечня:

  • Ш и П образные пластины магнитопровода – k = 60;
  • Ленточный сердечник – k = 50;
  • Тороидальный магнитопровод – k = 40.

Как видно, при использовании тороидального сердечника количество витков будет минимальным.

Тороидальный трансформатор

Зная количество витков на вольт, легко определить намоточные данные обмоток на любое напряжение:

W = N∙U.

Для первичной обмотки это будет:

W = N∙220.

Обратите внимание! Поскольку для понижающих трансформаторов сечение провода и количество витков сетевой обмотки больше всех остальных, то и омические потери в проводах также будут выше, поэтому для маломощных трансформаторов (до 100 Вт) нужно учесть эти потери, увеличив количество витков первичной обмотки на 5%.

Если рассчитывается трансформатор стержневого типа, то обычно обмотки делят пополам и наматывают их на обоих стержнях равномерно. Части одинаковых обмоток затем соединяют последовательно.

Не менее важным этапом расчета трансформатора является определение сечения проводников обмотки. Здесь за основу берется такое значение тока в проводах, которое вызывает их минимальный нагрев.

Чем выше сечение провода, тем меньше плотность тока через единицу сечения и, соответственно, меньше нагрев.

Но чрезмерное увеличение сечения обмоточных проводов приводит к увеличению массы трансформатора, завышению стоимости, а также вероятности того, что обмотки просто не поместятся в окнах магнитопровода.

Принято считать оптимальным плотность тока в обмотках 4-7 А на 1 мм2. Меньшее значение плотности используется для расчета сечения проводов первичной обмотки или любой другой, которая находится ближе к сердечнику магнитопровода. У данных обмоток наихудшие условия охлаждения.

Чтобы не оперировать плотностями тока и сложными формулами перевода площади сечения в диаметр, можно посчитать диаметр, используя их упрощенный вариант:

  • d = 0.7∙√I – для проводников первичной обмотки;
  • d = 0.6∙√I – для проводников вторичных обмоток.

Для обмоток используется изолированный обмоточный провод по сечению, наиболее близкому к расчетному, но не меньше его.

Важно! Формула дает расчётное значение для голого провода, без учета изоляции.

Для измерения диаметра неизвестного провода необходим микрометр. Приблизительно определить диаметр можно, намотав на карандаш десять витков и измерив длину намотки.

Чтобы определить, поместятся ли обмотки в окнах магнитопровода, подсчитайте коэффициент заполнения окна:

K=0.008∙(d12 ∙w1+ d22 ∙w2+ d32 ∙w3+…)/Sокна.

Если получившееся значение больше 0.3, то обмотки не поместятся, а перемотка наполовину готового устройства к хорошему результату не приведет. Выходов несколько:

  • Использовать магнитопровод с большим сечением;
  • Увеличить плотность тока в обмотках (не более 5%);
  • Понизить число витков во всех обмотках одновременно (также не более 5%).

Уменьшение количества витков приведет к появлению повышенного тока холостого хода и потерям в трансформаторе, которые буду выражены в повышении его температуры. Поэтому использование последних двух способов можно рекомендовать исключительно как крайнюю меру.

Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным.

Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник.

Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.

Как расшифровать маркировку трансформатора

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку.

Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий.

Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.

Сборка трансформатора

Качество трансформатора во многом зависит от правильности сборки магнитопровода. При сборке Ш образного броневого сердечника соседние пластины нужно укладывать поочередно в разные стороны. Пакет пластин должен быть уложен максимально плотно.

После сборки его нужно обязательно плотно стянуть винтами. Неплотно стянутый трансформатор издает сильный шум во время работы. Особое внимание следует уделить плотному прилеганию Ш образных пластин с пластинами перекрытия.

Зазор между ними приведет к тому, что сердечник станет разомкнутым, а отсюда вытекает следующее:

  • Повышение тока холостого хода;
  • Снижение КПД;
  • Повышенное магнитное поле рассеивания.

При сборке разрезного ленточного сердечника нужно обращать внимание на соответствие частей друг другу, поскольку при изготовлении они подгоняются путем шлифовки. Для понижения шума торцы пакетов пластин можно покрыть слоем лака.

Обратите внимание! Части ленточного магнитопровода требуют аккуратного обращения, поскольку расслоившиеся ленты практически невозможно установить на прежнее место.

Пластины разборного сердечника нельзя гнуть и подвергать ударам, поскольку это нарушит структуру металла, и он потеряет свои свойства.

В крайнем случае, изогнутые под большим радиусом пластины нужно аккуратно разогнуть руками и при сборке уложить их в середину пакета пластин. При дальнейшей стяжке они выровняются.

Расчет сетевого трансформатора не представляет сложности. Важнее здесь определиться с предъявляемыми к нему требованиями. От правильности поставленной задачи будет зависеть точность дальнейших расчетов. Для силового трансформатора расчет так же удобно выполнить, используя он-лайн калькулятор. По такой же методике рассчитывается повышающий трансформатор.

Расчет трансформатора с тороидальным магнитопроводом :: АвтоМотоГараж

Как рассчитать мощность трансформатора по железу

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.

ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:

  • напряжение первичной обмотки, U1 = 220 В;
  • напряжение вторичной обмотки, U2 = 36 В;
  • ток вторичной обмотки, l2 = 4 А;
  • внешний диаметр сердечника, D = 110 мм;
  • внутренний диаметр сердечника, d = 68 мм;
  • высота сердечника, h = 60 мм.

Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна.

Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.

Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.

 Описание вводимых и расчётных полей программы: поле светло-голубого цвета – исходные данные для расчёта, поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета – рассчитанное значение.

Формулы и таблицы для ручного расчет трансформатора:

1. Мощность вторичной обмотки;

2. Габаритная мощность трансформатора;

Табл.№1.

Величина Суммарная мощность вторичных обмоток Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
КПД0,76-0,880,88-0,920,92-0,950,95-0,96

3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;

4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;

5. Фактическая площадь сечения окна сердечника;

6. Величина номинального тока первичной обмотки;

Табл.№2.

Величина Суммарная мощность вторичных обмоток Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
COS Φ0,85-0,900,90-0,930,93-0,950,95-0,930,93-0,94

7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);

Табл.№3.

Конструкция магнитопровода Плотность тока J, [а/мм кв.] при Рвых, [Вт] 2-15 15-50 50-150 150-300 300-1000
Кольцевая5-4,54,5-3,53,53,0

8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;

9. Расчет числа витков в обмотках трансформатора;

n – номер обмотки,
U’ – падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.

В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.

Табл.№4.

Тор, величина U’ Суммарная мощность вторичных обмоток Рвых, [Вт] 8-25 25-60 60-125 125-250 250-600
U’17653.52.5
U’27653.52.5

Табл.№5.

Конструкция магнитопровода Магнитная индукция Вмах, [Тл] при Рвых, [Вт] 5-15 15-50 50-150 150-300 300-1000
Тор1,71,71,71,651,6

10. Расчет числа витков приходящихся на один вольт;

11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;

Sст ф – фактическое сечение стали имеющегося магнитопровода в месте расположения катушки;

Sок ф – фактическая площадь окна в имеющемся магнитопроводе;

Вмах- магнитная индукция, см. табл.№5;

J – плотность тока, см. табл.№3;

Кок – коэффициент заполнения окна, см. табл.№6;

Кст – коэффициент заполнения магнитопровода сталью, см. табл.№7;

Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц.

Табл.№6.

Конструкция магнитопровода Коэффициент заполнения окна Кок при Рвых, [Вт] 5-15 15-50 50-150 150-300 300-1000
Тор0,18-0,200,20-0,260,26-0,270,27-0,28

Табл.№7.

Конструкция магнитопровода Коэффициент заполнения Кст при толщине стали, мм 0,08 0,1 0,15 0,2 0,35
Тор0,850,88

Определив величину Sст*Sок, можно выбрать необходимый линейный размер магнитопровода, имеющий соотношение площадей не менее, чем получено в результате расчета.

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Как рассчитать мощность трансформатора по железу

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

ŋ = S1 / S2

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

n = W1 / W2

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

ω’=45/Qc (виток/вольт)

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик Виктора Егель. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки.

Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее.

Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:  . С помощью сечения сердечника необходимо определить количество витков n0, соответствующее 1 вольту напряжения: n0= 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xn0xU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n0 x U2; n3 = 1,03 x n0 x U3;n4 = 1,03 x n0 x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1. Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника.

Необходимо воспользоваться формулой: Sм = 4 x (d12n1 + d22n2 +d32n3 + d42n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках.

В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством.

Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников.

В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора.

КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока.

Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью.

Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc).

Здесь Sо иSс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.