Фоторезисторы устройство и принцип действия
Фоторезистор. Принцип работы, характеристики
Фоторезистор (фотосопротивление, LDR) – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.
Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.
Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.
Определение: Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии.
Характеристики фоторезистора
Цифровой мультиметр AN8009
Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…
Виды фоторезисторов и принцип работы
На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.
Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.
Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка.
Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами.Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.
Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.
Фоторезистор на схемах обозначается следующим образом:
Чувствительность фоторезистора от длины волны
Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.
Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью.
Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК).
При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за изменения сопротивления фоторезистора от теплового эффекта.
На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.
Чувствительность фоторезистора
Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.
Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.
Инертность фоторезистора
Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.
Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.
По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.
Конструкция и свойства фоторезистора
Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.
Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают.
В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки.
Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.
Примеры применения фоторезисторов
Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.
Фотореле для уличного освещения
Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.
При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100).
Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается.
В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.
Фоторезистор: определение, виды, как работает и где используется
В статье расскажем про фоторезистор, его определение и виды, как он работает, преимущества и недостатки. А также познавательное видео, где подробно рассказывается про фоторезистор и где он используется.
Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор. Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света. Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.
Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом. Фоторезистор меняет свое сопротивление только при воздействии света.
Как работает фоторезистор
Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами. Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.
Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами. Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.
Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому. Следовательно, они свободно перемещаются из одного места в другое. Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место. Эта место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.
Свободные электроны, которые свободно перемещаются из одного места в другое, переносят электрический ток. Аналогичным образом, дырки, движущиеся в валентной зоне, переносят электрический ток.
Аналогично, и свободные электроны, и дырки будут нести электрический ток.
Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).
Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается. В результате электрический ток, протекающий через фоторезистор, увеличивается.
Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.
Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.
При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.
Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:
Типы фоторезисторов
Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:
- Внутренний фотоэффект
- Внешний фотоэффект
Фоторезистор с внутренним фотоэффектом
Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов.
Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку.
В результате ни один электрон не остается свободным.
Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.Мы уже знали, что увеличение электрического тока означает снижение сопротивления. В фоторезисторах с внутренним фотоэффектом сопротивление несколько уменьшается с увеличением энергии света. Следовательно, внутренние фоторезисторы менее чувствительны к свету. Поэтому они не надежны для практического применения.
Фоторезистор с внешним фотоэффектом
Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.
Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов. Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния.
Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома.
Таким образом, каждый атом фосфора генерирует свободный электрон.
Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.
В внешних фоторезисторах у нас уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.
Увеличение электрического тока означает снижение сопротивления. Следовательно, сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.
Символ фоторезистора на схеме
Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.
Преимущества фоторезистора
- Маленький по размеру
- Бюджетный
- Легко переносить из одного места в другое.
Недостатки фоторезистора
- Точность фоторезистора очень низкая.
Применение фоторезисторов
Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.
Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.
Пример схемы датчика освещенности
Световой датчик
Если требуется базовый датчик освещенности, можно использовать схему LDR, такую как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится.
Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству.
Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.
компрессоры
компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков.
Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала.
Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.
Фоторезисторы. Виды и работа. Применение и особенности
Фоторезисторы — это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.
В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома.
При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности.
Величина сопротивления при этом может упасть до нескольких Ом.
Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.
Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.
Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.
По материалам изготовления фоторезисторы делятся на виды:
- С внутренним фотоэффектом.
- С внешним фотоэффектом.
При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.
При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.
Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки.Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.
Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.
Чувствительность и длина световой волны
Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.
Разные материалы обладают различными спектральными графиками отклика волны.
Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению.
При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.
Чувствительность фотосопротивления
Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.
При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.
Инертность
Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.
Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.
Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.
Свойства и конструктивные особенности
Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.
Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.
На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.
Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.
Сфера использования фоторезисторов
Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.
Световое реле для освещения улиц
В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.
При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается.
Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается.Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.
Что такое фоторезистор, принцип работы и область применения
В электротехнике используется огромное количество различных элементов, и далеко не последнее место среди них занимает сопротивление особого рода – фоторезистор. В этой статье я расскажу, что это такое, а также где до сих пор активно используются эти элементы. Итак, начнем.
Определение, исполнение и изображение на схемах
Принцип действия
Как проверить исправность элемента
Главные характеристики фоторезисторов
Где применяются такие элементы
Заключение
Определение, исполнение и изображение на схемах
Итак, для начала давайте дадим определение. Фоторезистор – это полупроводниковый прибор, сопротивление (проводимость) которого изменяется в зависимости от уровня освещенности чувствительной части изделия.
На выше представленной фотографии показан наиболее распространенный вариант исполнения, но встречаются модели в специальных защитных кожухах с прозрачной верхней частью.
А вот таким образом такой элемент обозначается на схемах:
yandex.ru
Принцип действия
Теперь давайте узнаем каков принцип действия у данного радиоэлемента.
Между двумя токопроводящими электродами размещается полупроводник. В том случае если свет не попадает на полупроводник, то его оммическое сопротивление имеет высокое значение (до нескольких МОм). Как только на полупроводник попадает свет, его сопротивление начинает снижаться, то есть проводимость увеличивается.
yandex.ru
Для производства полупроводящего слоя могут использоваться следующие материалы: сульфид Кадмия, сульфид Свинца, Селенит Кадмия и т.п. От того какой материал был применен для производства полупроводника будет зависеть его спектральная характеристика.
Иначе говоря диапазон длин волн, при освещении которыми будет происходить корректное изменение сопротивления.
Именно по этой причине при выборе резистора важно понимать, для работы в каком спектре он предназначен.
Спектральные характеристики материалов таковы:
yandex.ru
Очень часто возникает вопрос: какова полярность фоторезистора? Так вот у данного элемента нет P-N перехода, а это значит что определенного направления протекания тока тоже нет. То есть абсолютно без разницы, каким образом подключать фоторезистор, так как он неполярный элемент.
Как проверить исправность элемента
Проверка фоторезистора на самом деле предельно проста. Для этого нам потребуется мультиметр и, например, папка для бумаг.
Проверка выполняется следующим образом: переведите рукоять мультиметра в положение измерения сопротивления, крокодилами подсоедините щупы (полярность не имеет значения) и поместите элемент в папку, чтобы исключить воздействие света на элемент.
Таким образом вы получите сопротивление элемента в затемненном состоянии. Вытащив фоторезистор из папки, вы увидите, что сопротивление элемента изменилось. Причем чем интенсивнее будет световой поток, тем меньшим сопротивлением будет обладать элемент.
Причем зависимость сопротивления от освещенности будет иметь следующий вид:
yandex.ru
Главные характеристики фоторезисторов
У данных элементов есть несколько основных характеристик, на которые следует обращать внимание при выборе изделия:
1. Темновое сопротивление. Это сопротивление элемента, когда на него не оказывает воздействие световой поток.
2. Интегральная фоточувствительность. Данный параметр описывает реакцию элемента, изменение проходящего тока на изменение светового потока. Этот параметр измеряется при постоянном напряжении. Обозначается как S. (А/лм).Важно также знать, что все фоторезисторы обладают инерционностью в той или иной степени. Сопротивление изменяется не мгновенно, а в течении определенного отрезка времени (десятки микросекунд). Этот фактор ограничивает применение фоторезисторов в быстродействующих схемах.
Где применяются такие элементы
Итак, несмотря на некоторые ограничения, эти элементы активно используются в следующих устройствах:
1. Фотореле. Устройства, которые предназначены для автоматического включения отключения систем освещения без активного вмешательства человека.
2. Датчики освещенности. В таких устройствах фоторезисторы выполняют функцию регистратора светового потока.
3. Сигнализация. В сигнализационных системах применяются фоторезисторы чувствительные ультрафиолетовым волнам. Принцип таков фоторезистор постоянно освещается источником ультрафиолетового излучения и как только между источником и приемником возникает препятствие – срабатывает сигнализация.
4. Датчики, регистрирующие наличие чего-либо.
Заключение
Вот краткая информация о фоторезисторе, его устройстве и области применения. Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание.
Фоторезистор: основные параметры
В электротехнике широко применяются различные виды электрических сопротивлений. Среди них следует отметить фоторезистор, называемый также фотосопротивлением, основные параметры которого могут изменяться под действием световых лучей, попадающих на светочувствительную поверхность.
По сравнению с обычными резисторами, значение сопротивления этого устройства никак не связано с приложенным к нему напряжением.
С помощью фоторезисторов определяется наличие или отсутствие света, можно проверить и измерить интенсивность светового потока. В полной темноте их сопротивление существенно возрастает и может достигнуть 1 МОм.
Под влиянием света сопротивление, наоборот, начинает резко падать, а его значение будет полностью зависеть от интенсивности света.
Принцип действия фоторезисторов
В зависимости от материалов, применяемых для изготовления фоторезисторов, эти устройства разделяются на две группы, основными признаками которых являются внутренний и внешний фотоэффект.
Элементы с внутренним фотоэффектом производятся из нелегированных материалов – германия или кремния. Принцип действия их довольно простой. Попадая на поверхность устройства, фотоны приводят в движение электроны.
В результате, начинается их перемещение из валентной области в зону проводимости. Далее, в материале в большом количестве появляются свободные электроны, способствуя улучшению проводимости и соответствующему уменьшению сопротивления.
Это в общих чертах объясняет, как работает фоторезистор.
Достижение внешнего фотоэффекта становится возможным за счет материалов, из которых изготавливается фоторезистор. Для придания нужных свойств в них добавляются специальные примеси, известные как легирующие добавки.
Они изменяют параметры в нужную сторону и способствуют созданию новой энергетической зоны, насыщенной электронами, поверх имеющейся валентной области. Такие электроны требуют гораздо меньшее количество энергии для перехода в зону проводимости.
Результатом этого становится повышенная чувствительность фоторезисторов к разной длине световых волн.
Несмотря на различие физических свойств, каждое устройство обладает способностью к уменьшению сопротивления при воздействии на них светового потока. Чем выше рост интенсивности света, тем большее падение напряжения наблюдается у фоторезистора. В графическом выражении это свойство отображается в виде обратной нелинейной функции интенсивности света.
Общие характеристики
Несмотря на определенные различия в конструкции и физических свойствах, все типы фоторезисторов имеют общие характеристики.
Одним из основных параметров считается чувствительность, зависящая от длины световой волны.
В случае расположения длины волны за пределами рабочего диапазона, свет никак не будет влиять на устройство, то есть фоторезистор не реагирует на световые волны в данном диапазоне.
Каждый материал, применяемый для изготовления данных элементов, содержит собственные характеристики, обладает индивидуальными уникальными спектральными кривыми отклика волны по отношению к чувствительности. Например, устройства с внешним фотоэффектом лучше всего работают с большой длиной световых волн, со смещением в сторону инфракрасного сектора.Задействовать фоторезисторы в инфракрасном диапазоне следует с осторожностью, чтобы не допустить перегрева. Получившийся тепловой эффект может оказать влияние на данные измерений в связи с изменением сопротивления элемента.
По сравнению с фото транзисторами и фотодиодами, фоторезистор обладает более низкой чувствительностью. Дело в том, что два первых устройства относятся к полупроводникам, в которых электроны и дырки, движущиеся потоком через PN-переход, управляются с помощью света. В фоторезисторах такой переход отсутствует, поэтому их характеристики не совпадают.
При стабильной интенсивности светового потока, сопротивление фоторезисторов может все равно подвергнуться существенным изменениям из-за перепадов температуры, поскольку они обладают повышенной чувствительностью к таким перепадам. В связи с этим, данное устройство нельзя использовать для точных измерений интенсивности света.
Следующее свойство, характеризующее фоторезистор, называется инертностью.
Этот параметр представляет собой время задержки между изменяющимся освещением и сопротивлением, которое также изменяется при перепадах освещения.
При изучении данной характеристики было установлено, что сопротивление фоторезистора падает до минимальной отметки под действием полного освещения примерно за 10 миллисекунд.
Максимального значения фоторезистор достигает при полном отсутствии света примерно за 1 секунду. В связи с этим, подобные устройства не могут использоваться в местах, где обязательно учитывается наличие резких перепадов напряжения.
Конструкция и применение
Первым материалом, у которого обнаружилось свойство фотопроводимости, стал селен. В дальнейшем такие же качества были установлены и у других материалов. Современный фоторезистор представляет собой соединение различных веществ – сульфид свинца, антимонид индия, селенид свинца. Наиболее популярны устройства, изготовленные на основе сульфида кадмия и селенида кадмия.
В качестве примера можно взять элемент из сульфида кадмия. Его изготовление осуществляется из порошкообразного вещества высокой очистки, смешанного с инертными связующими материалами. Таким образом, в будущий прибор изначально закладываются необходимые характеристики.
Полученная смесь подвергается прессовке и спеканию. Далее в условиях вакуума на основание с электродами наносится специальная извилистая дорожка, представляющая собой фоточувствительный слой, реагирующий на свет.
Составной частью данной схемы является пластиковая или стеклянная оболочка, защищающая фоточувствительный элемент от загрязнений и повреждений.
Сульфид кадмия реагирует на свет в соответствии со спектральной кривой, совпадающей с человеческим глазом. Максимальная чувствительность имеет длину волны, составляющую примерно 500-600 нм и входящую в видимую часть спектра.Практическое применение фоторезисторов в системах освещения стало возможным в качестве датчиков, определяющих наличие или отсутствие света или фиксирующих степень его интенсивности.
Фоторезисторы используются для работы в автоматах, включающих и выключающих уличное освещение в различное время суток.
Кроме того, эти приборы применяются в фотоэкспонометрах и других устройствах, связанных с действием светового потока.
Что такое фоторезисторы, как они работают и где используются
В промышленности и бытовой электронике фоторезисторы используются для измерения освещенности, подсчета количества чего-либо, определения препятствий и прочего.
Основное его назначение — переводить количество света, попадающего на чувствительную площадь, в полезный электрический сигнал. Сигнал в последствии может обрабатываться аналоговой, цифровой логической схемой или схемой на базе микроконтроллера.
В этой статье мы расскажем, как устроен фоторезистор и как меняются его свойства под воздействием света.
Основные понятия и устройство
Фоторезистор – это полупроводниковый прибор, сопротивление которого (если удобно – проводимость) изменяются в зависимости от того, насколько сильно освещена его чувствительная поверхность. Конструктивно встречаются в различных исполнениях.
Наиболее распространены элементы такой конструкции, как изображено на рисунке ниже. При этом для работы в специфических условиях можно найти фоторезисторы, заключенные в металлический корпус с окошком, через которое попадает свет на чувствительную поверхность.
Ниже вы видите его условное графическое обозначение на схеме.
Интересно: изменение сопротивления под воздействием светового потока называется фоторезистивным эффектом.
Принцип действия заключается в следующем: между двумя проводящими электродами находится полупроводник (на рисунке изображен красным), когда полупроводник не освещен – его сопротивление велико, вплоть до единиц МОм. Когда эта область освещена её проводимость резко возрастает, а сопротивление соответственно падает.
В качестве полупроводника могут использоваться такие материалы как: сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От выбора материала при изготовлении фоторезистора зависит его спектральная характеристика.
Простыми словами – диапазон цветов (длин волн) при освещении которыми будет корректно изменяться сопротивление элемента. Поэтому выбирая фоторезистор, нужно учитывать в каком спектре он работает.
Например, под УФ-чувствительные элементы нужно подбирать те виды излучателей, спектральные характеристики которых подойдут к фоторезисторам. Рисунок, который описывает спектральные характеристики каждого из материалов изображен ниже.
Одним из часто задаваемых вопросов является «Есть ли полярность у фоторезистора?» Ответ – нет. У фоторезисторов нет p-n перехода, поэтому не имеет значения, в каком направлении протекает ток. Проверить фоторезистор можно с помощью мультиметра в режиме измерения сопротивления, измерив сопротивление освещенного и затемненного элемента.
Примерную зависимость сопротивления от освещенности вы можете видеть на графике ниже:
Здесь показано, как изменяется ток при определенном напряжении в зависимости от количества света, где Ф=0 – темнота, а Ф3 – яркий свет. На следующем графике приведено изменение тока при постоянном напряжении, но изменяющейся освещенности:
На третьем графике вы видите зависимость сопротивления от освещенности:
На рисунке ниже вы можете наблюдать как выглядят популярные фоторезисторы производства СССР:
Современные же фоторезисторы, нашедшие широкое распространение в практике самодельщиков, выглядят немного иначе:Для обозначения элемента обычно используется буквенная маркировка.
Характеристики фоторезисторов
Итак, у фоторезисторов есть основные характеристики, на которые обращаются внимание при выборе:
- Темновое сопротивление. Как понятно из названия — это сопротивление фоторезистора в темноте, то есть при отсутствии светового потока.
- Интегральная фоточувствительность – описывает реакцию элемента, изменение тока через него на изменение светового потока. Измеряется при постоянном напряжении в А/лм (или мА, мкА/лм). Обозначается как S. S=Iф/Ф, где Iф – фототок, а Ф – световой поток.
При этом указывается именно фототок. Это разность между темновым током и током освещенного элемента, то есть той частью, которая возникла из-за эффекта фотопроводимости (то же что и фоторезистивный эффекта).
Примечание: темновое сопротивление конечно же характерно для каждой конкретной модели, например, для ФСК-Г7 – это 5 МОм, а интегральная чувствительность 0,7 А/лм.
Помните, что фоторезисторы обладают определенной инерционностью, то есть его сопротивление изменяется не моментально после облучения световым потоком, а с небольшой задержкой. Этот параметр называется граничная частота.
Это частота синусоидального сигнала модулирующего световой поток через элемент, при которой чувствительность элемента снижается в корень из 2 раз (1.41). Быстродействие компонентов обычно лежит в пределах десятков микросекунд (10(-5)с).
Таким образом, использование фоторезистора в схемах, где нужна быстрая реакция ограничено, а часто и неоправданно.
Где используется
Когда мы узнали об устройстве и параметрах фоторезисторов, давайте поговорим о том, для чего он нужен на конкретных примерах. Хоть и применение фотосопротивлений ограничено их быстродействием, от этого область применения меньшей не стала.
- Сумеречные реле. Их еще называют фотореле – это устройства для автоматического включения света в темное время суток. На схеме ниже изображен простейший вариант такой схемы, на аналоговых компонентах и электромеханического реле. Её недостатком является отсутствие гистерезиса и возможное возникновение дребезжание при приграничных величинах освещенности, в результате чего реле будет дребезжать или включаться-отключаться при незначительных колебаниях освещенности.
- Датчики освещенности. С помощью фоторезисторов можно детектировать слабый световой поток. Ниже представлена реализация такого устройства на базе ARDUINO UNO.
- Сигнализации. В таких схемах используются преимущественно элементы, чувствительные к ультрафиолетовому излучению. Чувствительный элемент освещается излучателем, в случае появления препятствия между ними – срабатывает сигнализация или исполнительный механизм. Например, турникет в метро.
- Датчики наличия чего либо. Например, в полиграфической промышленности с помощью фоторезисторов можно контролировать обрыв бумажной ленты или количество листов, подаваемых в печатную машину. Принцип работы подобен тому, что рассмотрен выше. Таким же образом можно считать количество продукции, прошедшей по конвейерной ленте, или её размер (при известной скорости движения).