Энкодеры устройство и принцип работы

Оптические и индуктивные энкодеры: что лучше?

Энкодеры устройство и принцип работы

Zettlex UK Ltd
Перевод на русский язык подготовлен официальным представителем Zettlex в России – компанией ООО АВИ Солюшнс

С учетом существующего многообразия технологий позиционирования, неудивительно, что инженеры-разработчики могут испытывать затруднения при выборе подходящего датчика для своего проекта. В данной статье рассматривается, как работают оптические и индуктивные энкодеры, а также анализируются их относительные сильные и слабые стороны.

Оптические энкодеры остаются наиболее распространенным выбором в качестве датчика положения для производителей оборудования с 1970-х годов. Они широко доступны от ряда производителей и могут быть установлены в различном промышленном оборудовании, таком как принтеры, станки с ЧПУ и роботы.

Традиционные индуктивные датчики положения: резольверы и дифференциальные трансформаторы для измерения линейных перемещений (англ. LVDT – Linear Variable Differential Transformer), существуют с 1940-х годов, но находят  не такое широкое применение.

Они, как правило, используются в жестких условиях эксплуатации или в приложениях, критичных по безопасности, в аэрокосмической, оборонной и нефтехимической отраслях, где их надежность и прочность превосходят их высокую стоимость, объем и вес. Однако новый тип устройств, индуктивный энкодер или “incoder” (англ.

Incoder – Inductive encoder), занимает всё большую долю на рынке и меняет традиционный баланс. Incoder можно рассматривать как гибрид индуктивных и оптических технологий.

Что такое энкодер?

В первую очередь остановимся на терминологии. Энкодер – это устройство, которое преобразует положение или движение в электрический сигнал, обычно это цифровой код.

Их также называют поворотными энкодерами, энкодерами с выходным валом, угловыми датчиками, угловыми энкодерами или датчиками угла поворота, угловыми передатчиками – и этот список можно продолжить.

Для целей настоящей статьи далее будем использовать термин энкодер.

Энкодеры в разделе каталога

Энкодеры могут быть поворотными или линейными. Они также могут быть абсолютными или инкрементальными, и это важное различие. Если мы рассмотрим простой абсолютный вращающийся энкодер, то его электрический выход показывает текущее угловое положение вала сразу после включения питания. Выход инкрементных датчиков передает информацию только о движении вала.

Другими словами, выходной сигнал от инкрементного энкодера выдает данные о положении только при движении. Некоторые инкрементные датчики оснащены контрольной отметкой, таким образом энкодер может использовать это в качестве опорной точки, от которой измеряется увеличение расстояния или уменьшение при вращении в обратную сторону.

Выбор инкрементных энкодеров шире, чем абсолютных датчиков, но это меняется со временем, так как величина дополнительных расходов для абсолютных устройств уменьшается.

Кроме этого, во многих приложениях, в частности в робототехнике и автоматизированных системах, в меньшей степени допустимо, чтобы оборудование проходило процедуру калибровки при запуске, в таком случае датчики положения должны определять положение в той точке, где находятся.

Чаще всего на выходе инкрементных датчиков снимаются две последовательности импульсов A/B (серии импульсов, обычно со сдвигом фазы канала В относительно канала А на 90°). Это относится к двум или большему числу потоков импульсов низкого напряжения в квадратуре, которые меняются с высокого или низкого состояния при изменении положения.

Обнаружение вращения обеспечивается определением, какой из потоков импульсов опережает другой, например, импульсы потока A по фазе на 90° опережают импульсы потока B импульсов или наоборот. На выходе абсолютных энкодеров наиболее часто встречается интерфейс SSI (англ. Synchronous Serial Interface, синхронно-последовательный интерфейс), который является протоколом цифрового обмена данными, различные сочетания битовых значений 0 или 1, которого указывают на абсолютное положение.

Что такое оптический энкодер?

Существует ряд технологий, применяемых в энкодерах для измерения положения, наиболее распространенной из которых является оптическая. В оптическом энкодере луч света направлен сквозь или на диск с отверстиями, так что свет проходит или блокируется.

Оптический детектор или считывающая головка воспринимают проходящий свет и генерируют соответствующий электрический сигнал. Из отверстий и серий меток на диске формируется специальный узор в виде оптической решетки, которая может использоваться для измерения угла или движения.

Масштаб маркировки может быть очень мелким – вплоть до микрон – позволяя многим оптическим датчикам выдавать данные с высокой степенью точности.

 

Рис. 1 – Оптические энкодеры используют оптический датчик и диск для измерения угла 

Корпусированный энкодер со сплошным валом является стандартным исполнением, в котором вал энкодера механически соединен с остальной системой. Вал энкодера, на котором закреплен оптический диск закреплен на подшипнике. Оптический диск, в свою очередь, работает в тесной связи с оптическими детекторами.

Электрическое подключение обычно реализуется посредством многожильного кабеля, по которому осуществляется электропитание и снимаются выходные данные о положении датчика. Простой электрический интерфейс в сочетании с широкой распространенностью делает такие датчики легко интегрируемыми.

Основной недостаток таких энкодеров заключается в том, что они неустойчивы к жестким условиям окружающей среды, в которой может присутствовать вибрация, удары, посторонние вещества или экстремальные температуры.

Недостаточная или вообще отсутствующая сигнализация о сбое может привести в худшем случае к некорректному выводу данных положения или – в лучшем случае – сообщению об ошибке. Как правило, выдача ложного положения (без сообщения об ошибке) является гораздо более серьезным сбоем, чем отсутствие данных о положении, поскольку результат может быть катастрофическим.

При использовании датчиков большего диаметра или энкодеров в форме кольца в кратких руководствах часто задаются чрезвычайно жесткие допуски на установку считывающей головки на оптический диск или решетку для достижения заявленных результатов измерений.

Такие бескорпусные кольцевые энкодеры особенно чувствительны к наличию посторонних веществ в рабочей зоне оптического датчика, учитывая малый размер оптических элементов, сопоставимый с величиной частиц пыли или грязи.
Неудивительно, что оптические энкодеры обычно не являются предпочтительным выбором для приложений с высокими требованиями к надежности или относящихся к сфере безопасности.
Преимущества
Высокое разрешение, широкая доступность, возможна высокая точность
Недостатки 
Хрупкий, чувствительный к посторонним веществам, катастрофические режимы сбоев, ограниченный диапазон температур (от -20 до +70 °C)

Что такое индуктивный энкодер?

В индуктивных энкодерах, часто называемых инкодерами, применены индукционные или трансформаторные принципы для измерения позиции мишени или ротора относительно статора.

В таких датчиках используются те же физические принципы, что и в традиционных индуктивных устройствах, таких как бесщеточные резольверы или дифференциальные трансформаторы для измерения линейных перемещений, однако, электрический интерфейс индуктивных энкодеров подобен интерфейсу оптических датчиков положения – простой источник питания постоянного тока и цифровой электрический выходной сигнал.

Большинство традиционных резольверов выглядят скорее, как электрический двигатель – с медными обмотками на статоре, которые взаимодействуют с металлическим ротором или мишенью. Индуктивная или трансформаторная связь между обмотками статора изменяется в зависимости от положения ротора. Вместо конструкции в виде трансформаторных обмоток, в конструкции индуктивных энкодеров используются печатные платы ротора и статора, делая их менее громоздкими, более точными и при этом менее дорогостоящими в производстве.

В связи с их применением в военных самолетах во Второй мировой войне, резольверы и LVDT-датчики получили заслуженную репутацию точных, прочных и надежных устройств, поэтому они становятся автоматическим выбором для приложений с высокими требованиями к надежности и безопасности. Это связано с тем, что принципы работы трансформатора, как правило, не подвержены негативному влиянию неблагоприятных условий окружающей среды, включая наличие грязи, воды и льда.

Индуктивные энкодеры так же, как и оптические датчики, легко интегрируемы, так как требуют только подключения питания и на выходе обеспечивают цифровой сигнал, обозначающий положение. Это свидетельствует о том, что у инкодеров есть все преимущества резольверов, но ни одного из их недостатков.

Поскольку индуктивные энкодеры не содержат в своей конструкции хрупкие оптические компоненты, они не чувствительны к наличию посторонних веществ и работают не только в ограниченных температурных диапазонах. Кроме того, прецизионное измерение положения не зависит от точной соосности движущихся и неподвижных элементов, что обеспечивает широкие допуски при установке и работу без подшипников. Устранение необходимости в подшипниках привело к созданию тонких кольцевых конструкций с малым осевым габаритом и большим, полым валом, что упростило их интеграцию в оборудование с жесткими ограничениями по размеру или весу, такими как кардановы подвесы, роботизированные манипуляторы и приводы.

 

Рис 2 – Примеры индуктивных энкодеров

Преимущества 
Высокое разрешение, точность, надежность, прочность, долговечность, отсутствие жестких требований к высокоточной соосности.
Недостатки 
Рабочий температурный диапазон (от -100 до + 125 ° C) шире, чем у оптических энкодеров, но не так широк, как у резольверов.

Компания Zettlex разрабатывает и производит абсолютные и инкрементальные энкодеры.

Датчики серии IncOder компании Zettlex – это бесконтактные устройства для прецизионного измерения угла. Датчик IncOder состоит из двух частей: статор и ротор, каждая из которых имеет форму плоского кольца.

Большое центральное отверстие позволяет легко пропускать валы, оптические волокна, трубы и кабели, размещать токосъёмники. Индуктивные угловые энкодеры серии IncOder не требуют точной механической установки, скорее можно сказать, что ротор и статор должны быть просто привинчены в конечное изделие.

Zettlex выпускает датчики положения в широком диапазоне форм и размеров, включая вращающиеся, кольцевые, линейные, 2-х и многоосевые. Диапазон измерений линейных датчиков – до 2700 мм. Вращающиеся устройства измеряют непрерывно все 360° или несколько оборотов.

Кроме того, вращающиеся устройства используются в качестве энкодеров высокоскоростных двигателей или беспроводных преобразователей вращающего момента.

Инкрементальные энкодеры

Энкодеры устройство и принцип работы

Инкрементальный энкодер это дискретный датчик угла поворота вала, генерирующий нормированный электрический импульс на каждое определенное приращение угла поворота. При непрерывном вращении вала возникает последовательность импульсов, содержащая информацию об относительном угле поворота и скорости вращения. 

Основным рабочим параметром энкодера является количество импульсов на один оборот вала датчика. Простой подсчет количества импульсов позволяет определить угол поворота относительно некоего начального значения. Для получения информации о скорости вращения производится операция дифференцирования, то есть определения частоты следования импульсов на некотором временном промежутке.

Многообразие физических и конструктивных решений и широкий ряд типоразмеров инкрементальных энкодеров позволяет внедрять их в любые системы обратной связи, позволяя обеспечивать высокую точность управления оборудованием.

В разделах каталога и прайс-материалах можно получить исчерпывающую информацию по техническим характеристикам инкрементальных энкодеров, сопутствующим аксессуарам и ценам поставки.

Принципы работы инкрементальных энкодеров

Инкриментальный энкодер неприхотливый в обслуживании прибор. Инкриментальный энкодер универсальный датчик применимый в большинстве сфер производства.

Применяется в основном два физических принципа реализации энкодера:

  • оптико-электронный. На валу датчика установлен оптически прозрачный диск с равномерно нанесенными на него по периметру непрозрачными метками. Свет проходит через диск от группы излучающих светодиодов к группе принимающих фотодиодов. При повороте диска и прохождении метки в луче света, изменяется засветка фотоприемников, при этом электронная схема формирует выходной импульс с нужными параметрами.
  • магнитный или магнитно-резистивный. Магнитные используют в качестве чувствительного элемента датчик Холла, регистрирующий последовательность прохождения полюсов магнита, установленного на валу. Магнитно-резистивный чувствительный элемент регистрирует изменение сопротивления в зависимости от величины и направления магнитного поля.

При реализации обоих принципов, электронная схема энкодера формирует, на практике, как правило, три последовательности импульсов: две из них соответствуют расположению меток на периметре диска и сдвинуты относительно друг друга на ¼ периода (90 эл. градусов).

Этот прием позволяет определять направление вращения вала энкодера. Третья последовательность состоит из одного импульса на каждый оборот и называется опорным или индексным сигналом.

Он позволяет привязать показания датчика к определенному положению вала в пределах одного оборота.

При разнообразии схемных решений, выходные сигналы инкрементальных энкодеров имеют один из двух форматов, в зависимости от напряжения питания датчика и выбора пользователя: TTL/RS422 или HTL/push-pull. Все устройства работают в пределах стандарта интерфейса IO-Link, выполняя, в зависимости от степени «интеллектуальности» три вида связи в системе:

  • коммутационное (бинарное) состояние (как простой датчик контактного типа);
  • циклическая цифровая передача результатов измерения;
  • прием программируемых параметров датчика и передача результатов его диагностики (например – перегрузка, перегрев и т.п.).

Применение инкрементальных энкодеров

Применение инкрементальных энкодеров целесообразно в любых мощных электроприводах систем точного перемещения или систем, критичных к скоростным и пуско-тормозным режимам. В таких приводах необходима точная информация о параметрах движения рабочего органа:

  • в приводах станков по изготовлению бумаги и картона;
  • в аппаратах любых видов упаковки и дозирования;
  • в приводах лесозаготовительных и деревообрабатывающих машин;
  • в приводах оборудования прокатного производства: обжимных валков, рольгангов, кантователей, опрокидывателей;
  • в приводах подъёмных кранов, подъёмников и лифтов;
  • в приводах металлообрабатывающих станков, бурового и строительного оборудования;
  • в робототехнических комплексах и транспортерах на сборочном производстве и т.п.

Привлекательными сторонами применения инкрементальных энкодеров являются их универсальность при широком выборе типоразмеров, относительная дешевизна и простота монтажа.

Выбор инкрементального энкодера с целью интеграции его в систему управления технологическим объектом предусматривает решение следующих основных вопросов:

  • точность измерения – количество импульсов на один оборот вала энкодера;
  • диаметр и тип вала энкодера, необходимость дополнительных муфт, фланцев и т.п.;
  • длина кабеля и тип выходного разъёма, степень защиты устройства;
  • напряжение питания, тип выходного сигнала;
  • вопросы сигнальной связи энкодера с системой: необходимость программирования энкодера, программное согласование цикличности передачи результатов измерений с частотой опроса входов применяемого контроллера или работа в стандартном интерфейсе и т.п.

Очевидная сложность комплексного технического решения при необходимости известной экономии требует значительной эрудиции и опыта в решении подобных ситуаций. Воспользуйтесь помощью и консультациями специалистов компании «РусАвтоматизация». Они изучат проблему, проконсультируют по интересующему Вас оборудованию и предложат оптимальные решения.

Абсолютный и инкрементальный энкодеры | Особенности

Энкодеры устройство и принцип работы

Энкодер (преобразователь угловых перемещений) – это электронное устройство, позволяющее с необходимой точностью измерить различные параметры вращения какой-либо детали, как правило, вала электродвигателя или редуктора.

Измеряемыми параметрами могут быть: скорость вращения, угловое положение по отношению к нулевой метке, направление вращения. Фактически энкодер является датчиком обратной связи, на выходе которого цифровой сигнал меняется в зависимости от угла поворота. Этот сигнал обрабатывается и далее подается на устройство индикации или на привод.

Применение энкодеров

Энкодеры широко применяются в промышленном оборудовании в ситуациях, когда необходима точная информация об объекте, который вращается или перемещается. Это может быть лента транспортера с какими-либо деталями или грузами, система измерения длины и проч. Энкодер позволяет цифровым способом узнать точную позицию детали или угол её поворота.

Виды энкодеров

Существуют два вида энкодеров – инкрементальный и абсолютный.

Инкрементальный энкодер по конструкции проще абсолютного и используется в подавляющем большинстве случаев. Данное устройство можно представить как диск с прорезями, который просвечивается оптическим датчиком.

При вращении диска датчик включается или выключается в зависимости от того, находится ли он над прорезью или нет.

В результате на выходе энкодера формируется последовательность дискретных импульсов, частота которых зависит от разрешения устройства (см. ниже) и частоты его вращения.

Для того, чтобы определять начальное положение (точку отсчета), используется нуль-метка (выход Z, Zero), которая формируется один раз на полный оборот. Для определения направления вращения у энкодеров обычно имеются два выхода (А и В), на которых импульсы сдвинуты по фазе на четверть периода. По разнице фаз можно однозначно определить, в какую сторону вращается вал.

Основным минусом инкрементального энкодера является необходимость непрерывной обработки и анализа сигналов — для этого требуется контроллер и соответствующая программа. Кроме того, чтобы узнать положение инкрементального энкодера после подачи на него питания, необходимо провести инициализацию для поиска нуль-метки.

Абсолютный энкодер имеет более сложное устройство, но позволяет определить угол поворота в любой момент времени, даже в неподвижном состоянии механизма сразу после включения питания. На выходе абсолютного энкодера действует параллельный код Грея, разрядность которого определяет разрешение, а значит и точность показаний датчика.

Основные параметры

Главный параметр любого энкодера – разрешение, то есть количество импульсов (для абсолютного преобразователя – разрядность, или количество бит) на один оборот. Довольно часто используются преобразователи с разрешением 1024 импульса на оборот.

Прочие параметры:

  • напряжение питания – от 5 до 24 В
  • тип вала – сплошной, полый, без вала (сквозное отверстие)
  • диаметр вала или отверстия
  • тип выхода – как правило, транзисторный выход с открытым коллектором
  • также учитываются размер корпуса, тип крепления и степень защиты

Также учитываются размер корпуса, тип крепления и степень защиты.

Монтаж

Энкодер крепится на валу, параметры вращения которого измеряются. Для монтажа используется специальная переходная муфта, позволяющая компенсировать возможную несоосность с валом энкодера, при этом его корпус должен быть жестко зафиксирован.

Другой вариант крепежа подходит для преобразователей с полым валом. В этом случае вал, параметры вращения которого подлежат измерению, непосредственно входит внутрь преобразователя и фиксируется в полой втулке либо в сквозном отверстии. В данном случае корпус энкодера не фиксируется, за исключением какой-либо пластины или ограничителя, не позволяющей ему вращаться.

Подключение

В простейшем случае, если позволяет ситуация, выход энкодера можно подключить ко входу счетчика и запрограммировать его на измерение скорости.

Но, как правило, энкодер используется совместно с контроллером. К контроллеру подключаются все необходимые выходы, и его программа рассчитывает скорость, ускорение, положение объекта с необходимыми коэффициентами и размерностями.

Например, энкодер установлен на валу электродвигателя, который перемещает одну деталь по направлению к другой. Путем вычислений на экране оператора отображается зазор между деталями, а при достижении некоторого минимального зазора движение деталей прекращается, чтобы избежать их повреждения.

Также преобразователи угловых перемещений нередко используются в качестве элемента обратной связи на валу двигателя, подключенного через частотный преобразователь.

В этом случае энкодер устанавливается на валу двигателя или редуктора, и подключается к частотнику через специальную плату сопряжения.

Таким образом, появляется возможность точного позиционирования поддержания нужной скорости и момента двигателя.

Другие полезные материалы:
10 типичных проблем с частотниками
FAQ по электродвигателям
Использование тормозных резисторов с ПЧ

Подключение энкодера к Arduino. GyverEncoder [03.12.19]

Энкодеры устройство и принцип работы

Подключение энкодера к Arduino. GyverEncoder [03.12.19]

Объект энкодера может быть создан несколькими способами:

Encoder enc; // не привязан к пину (для виртуального энкодера, см. пример) Encoder enc(пин CLK, пин DT); // энкодер без кнопки (ускоренный опрос) Encoder enc(пин CLK, пин DT, пин SW); // энкодер с кнопкой Encoder enc(пин CLK, пин DT, пин SW, тип); // энкодер с кнопкой и указанием типа Encoder enc(пин CLK, пин DT, ENC_NO_BUTTON, тип); // энкодер без кнопки и с указанием типа

Опрос

Опрос энкодера происходит в методе .tick(), после чего можно узнать состояние энкодера из методов is*. Сам .tick() должен вызываться как можно чаще:

  • В loop() – у вас должен быть “прозрачный” loop без задержек
  • В прерывании таймера – достаточно опрашивать энкодер каждые 5 мс (зависит от скорости поворота)
  • В аппаратном прерывании (достаточно завести одну таковую ногу энкодера)

Для “расшифровки” состояния энкодера используются следующие методы:

  • isTurn(); // возвращает true при любом повороте, сама сбрасывается в false
  • isRight(); // возвращает true при повороте направо, сама сбрасывается в false
  • isLeft(); // возвращает true при повороте налево, сама сбрасывается в false
  • isRightH(); // возвращает true при удержании кнопки и повороте направо, сама сбрасывается в false
  • isLeftH(); // возвращает true при удержании кнопки и повороте налево, сама сбрасывается в false
  • isFastR(); // возвращает true при быстром повороте
  • isFastL(); // возвращает true при быстром повороте

Для кнопки энкодера:

  • isPress(); // возвращает true при нажатии кнопки, сама сбрасывается в false
  • isRelease(); // возвращает true при отпускании кнопки, сама сбрасывается в false
  • isClick(); // возвращает true при нажатии и отпускании кнопки, сама сбрасывается в false
  • isHolded(); // возвращает true при удержании кнопки, сама сбрасывается в false
  • isHold(); // возвращает true при удержании кнопки, НЕ СБРАСЫВАЕТСЯ
  • isSingle(); // возвращает true при одиночном клике (после таймаута), сама сбрасывается в false
  • isDouble(); // возвращает true при двойном клике, сама сбрасывается в false

Примечание: isClick() возвращает true сразу же после отпускания кнопки, в то время как isSingle() возвращает true после таймаута, во время которого можно сделать второй клик и поймать уже двойной клик при помощи isDouble().

Настройки в скетче

Некоторые параметры работы энкодера можно настроить из программы:

  • setType(type); // тип энкодера TYPE1 одношаговый, TYPE2 двухшаговый. Если ваш энкодер работает странно, смените тип
  • setTickMode(tickMode); // MANUAL / AUTO – ручной или автоматический опрос энкодера функцией tick(). (по умолчанию ручной)
  • setDirection(direction); // NORM / REVERSE – направление вращения энкодера
  • setFastTimeout(timeout); // установка таймаута быстрого поворота
  • setPinMode(mode); // тип подключения пинов энкодера, подтяжка HIGH_PULL (внутренняя) или LOW_PULL (внешняя на GND)
  • setBtnPinMode(mode); // тип подключения кнопки, подтяжка HIGH_PULL (внутренняя) или LOW_PULL (внешняя на GND)

Настройки в библиотеке

В заголовочном файле библиотеки (GyverEncoder.h) есть несколько дополнительных настроек:

Время:

  • ENC_DEBOUNCE_TURN 1 – время антидребезга для энкодера, миллисекунд
  • ENC_DEBOUNCE_BUTTON 80 – время антидребезга для кнопки, миллисекунд
  • ENC_HOLD_TIMEOUT 700 – таймаут удержания кнопки, миллисекунд
  • ENC_DOUBLE_TIMEOUT 300 – таймаут двойного клика

Использование кнопки:

  • #define ENC_WITH_BUTTON  // если закомментировать данную строку, опрос кнопки будет полностью “убран” из кода, что сделает его легче и чуть быстрее

Логика подключения:

  • #define DEFAULT_ENC_PULL LOW_PULL // тип подключения энкодера по умолчанию (LOW_PULL или HIGH_PULL)
  • #define DEFAULT_BTN_PULL HIGH_PULL // тип подключения кнопки энкодера по умолчанию (LOW_PULL или HIGH_PULL)

Алгоритмы опроса энкодера

Алгоритм работы библиотеки можно выбрать в заголовочном файле библиотеки (GyverEncoder.h), для этого нужно раскомментировать одну из строк с дефайнами алгоритмов:

  • #define FAST_ALGORITHM // быстрый, не справляется с люфтами
  • #define BINARY_ALGORITHM // медленнее, лучше справляется с люфтами
  • #define PRECISE_ALGORITHM // медленнее, но работает даже с убитым энкодером (по мотивам https://github.com/mathertel/RotaryEncoder)

Работа с “виртуальным” энкодером

Версия библиотеки 4+ поддерживает работу с виртуальным энкодером, т.е. алгоритм опрашивает не напрямую цифровой пин микроконтроллера, а логическую величину, которую ему передадут. Таким образом можно попробовать опрашивать несколько энкодеров, подключенных через расширитель пинов. Для работы с таким энкодером нужно инициализировать энкодер без указания пина:

Encoder enc; // не привязан к пину

Работа с таким энкодером ничем не отличается от обычного, кроме метода tick() – в него нужно передать состояния тактовых пинов энкодера (CLK и DT), а также пина кнопки (опционально):

enc1.tick(stateCLK, stateDT, stateSW); // с кнопкой enc1.tick(stateCLK, stateDT); // без кнопки

Смотрите пример external_enc в папке с примерами

Encoder(); // для непривязанного к пинам энкодераEncoder(uint8_t clk, uint8_t dt, int8_t sw = -1, bool type = false); // CLK, DT, SW, тип (TYPE1 / TYPE2) TYPE1 одношаговый, TYPE2 двухшаговый. Если ваш энкодер работает странно, смените тип// Варианты инициализации:// Encoder enc; // не привязан к пину// Encoder enc(пин CLK, пин DT); // энкодер без кнопки (ускоренный опрос)// Encoder enc(пин CLK, пин DT, пин SW); // энкодер с кнопкой// Encoder enc(пин CLK, пин DT, пин SW, тип); // энкодер с кнопкой и указанием типа// Encoder enc(пин CLK, пин DT, ENC_NO_BUTTON, тип); // энкодер без кнопкой и с указанием типаvoid tick(); // опрос энкодера, нужно вызывать постоянно или в прерыванииvoid setType(boolean type); // TYPE1 / TYPE2 – тип энкодера TYPE1 одношаговый, TYPE2 двухшаговый. Если ваш энкодер работает странно, смените типvoid setTickMode(boolean tickMode); // MANUAL / AUTO – ручной или автоматический опрос энкодера функцией tick(). (по умолчанию ручной)void setDirection(boolean direction); // NORM / REVERSE – направление вращения энкодераvoid setFastTimeout(int timeout); // установка таймаута быстрого поворотаvoid setPinMode(bool mode); // тип подключения энкодера, подтяжка HIGH_PULL (внутренняя) или LOW_PULL (внешняя на GND)void setBtnPinMode(bool mode); // тип подключения кнопки, подтяжка HIGH_PULL (внутренняя) или LOW_PULL (внешняя на GND)boolean isTurn(); // возвращает true при любом повороте, сама сбрасывается в falseboolean isRight(); // возвращает true при повороте направо, сама сбрасывается в falseboolean isLeft(); // возвращает true при повороте налево, сама сбрасывается в falseboolean isRightH(); // возвращает true при удержании кнопки и повороте направо, сама сбрасывается в falseboolean isLeftH(); // возвращает true при удержании кнопки и повороте налево, сама сбрасывается в falseboolean isFastR(); // возвращает true при быстром поворотеboolean isFastL(); // возвращает true при быстром поворотеboolean isPress(); // возвращает true при нажатии кнопки, сама сбрасывается в falseboolean isRelease(); // возвращает true при отпускании кнопки, сама сбрасывается в falseboolean isClick(); // возвращает true при нажатии и отпускании кнопки, сама сбрасывается в falseboolean isHolded(); // возвращает true при удержании кнопки, сама сбрасывается в falseboolean isHold(); // возвращает true при удержании кнопки, НЕ СБРАСЫВАЕТСЯboolean isSingle(); // возвращает true при одиночном клике (после таймаута), сама сбрасывается в falseboolean isDouble(); // возвращает true при двойном клике, сама сбрасывается в false Алекс2019-12-03T02:18:00+03:00

Copyright AlexGyver Technologies 2015-2019

Инкрементальный угловой энкодер: принцип действия, области применения | Фэнко

Энкодеры устройство и принцип работы

8 Июля 2018 16:22

// Технологии

Инкрементальные датчики обеспечивают отличную обратную связь по скорости и пройденному пути, и, поскольку используется небольшое количество измерительных элементов, такие системы являются простыми и недорогими.

Еще называют относительный датчик (угла, обратной связи или линейный), перемещений, счетчик импульсов. Определяет относительное перемещение, учитывая только разницу между измерениями.

Электроника с датчика посылает импульсы (часто называемые квадратурными) по каналам, а смещения в этих импульсах указывают на направление и величину перемещения / движения. Устройства обеспечивают отличную обратную связь по скорости, пройденному пути.

Поскольку используется небольшое количество измерительных элементов, такие системы являются простыми, недорогими, надежными.

Тем не менее, данные преобразователи чувствительны к таким факторам окружающей среды, как вибрация (негативное влияние уменьшается по мере улучшения технологии измерений), могут терять разрешающую способность на высоких оборотах из-за ограничений по выходной частоте. Они также ограничены возможностью предоставления информации только о перемещении, поэтому для вычисления позиции такие датчики требуют наличия маркера исходного (нолевого) положения, обычно это референтная (нолевая) метка.   

Ситуации, когда необходимо применять абсолютные энкодеры

Абсолютный угловой датчик самостоятельно определяет данные о положении – ему не нужно полагаться на внешнюю электронику, чтобы выдать реальное текущее положение. Абсолютные преобразователи позволяют работать без дополнительных внешних компонентов и с повышенным быстродействием станкам и системам, которые:

  • полагаются на нелинейное позиционирование
  • обрабатывают большие детали
  • имеют длительный рабочий цикл

В реальной жизни абсолютные энкодеры обеспечивают более высокую точность работы оборудования:

  • Обратная связь в многоосевых станках с ЧПУ, используемых при производстве всевозможных деталей
  • Автоматическое определение высоты больничных коек с подъемным механизмом ножничного типа
  • Точное перемещение портальных осей для больших транспортных средств, таких как краны или морские / карьерные подъемники
  • Перемещение автоматических дверей или отсеков без конечных выключателей
  • Непрерывное точное роботизированное движение даже после сбоя питания

Очевидной сильной стороной абсолютных датчиков, особенно по сравнению с резольверами или инкрементальными аналогами, является влияние на общую производительность их точности и скорости определения положения.

Как работает инкрементальный энкодер

Устройство выдает определенное количество импульсов за один оборот вала. Выходом может быть одиночный канал (часто называют «A») или два канала («A», «B»), которые смещены относительно друг друга для. Смещение каналов позволяет выявить направление вращения. Смещение фаз двух сигналов называется квадратурой.

Стандартно прибор состоит из оптико-механического подшипникового узла, печатной платы, корпуса, выходного соединителя. Печатная плата содержит сенсорную матрицу, которая регистрирует два первичных сигнала с целью дальнейшей обработки.

Дополнительные выходы датчиков: Канал референтной (ноль) метки (его называют “Z” или “R”) в виде одного импульса на оборот служит для поиска нолевой позиции или для контроля работы выходов A, B. Эта метка может быть привязана к A или B в их различных состояниях. Она также может быть различной по ширине.

Коммутация с помощью U, V, W треков может быть предусмотрена в некоторых преобразователях. Треки согласуются с коммутирующими обмотками серводвигателей. Они также обеспечивают возможность подачи с электропривода или усилителя в каждую обмотку двигателя тока нужной силы в правильной последовательности.

Альтернативы инкрементальным энкодерам: резольверы, абсолютные энкодеры, энкодеры с аналоговым сигналом.    

Применение инкрементальных энкодеров

Прибор разработан как универсальный, настраиваемый в соответствии с широким спектром задач сенсор. Выделяют три обширные области использования в зависимости от внешних условий:

  • Тяжелые условия эксплуатации: агрессивная рабочая среда с высокой вероятностью воздействия загрязнений, влаги, высокой температуры, ударов, вибрации, как, например, на целлюлозно-бумажных, сталелитейных, деревообрабатывающих заводах.
  • Промышленная автоматизация: общепроизводственные рабочие условия, которые требует стандартного класса защиты IP, устойчивости к средней силы ударам, вибрация, температурным колебаниям, как например, на заводах по производству продуктов питания, напитков, текстильных заводах, на автоматизированном заводском оборудовании в целом.
  • Легкие промышленные условия / Сервоустройства: сфера контроля перемещений и позиционирования с высокими требованиями к точностным, температурным характеристикам, например, робототехника, электроника, полупроводниковое приборостроение.

Оптические угловые энкодеры

Используют метод прохождения света через специальный индикаторный растр (шкалу) для определения положения вала, следовательно, объекта.
Самую простую конструкцию среди оптических угловых датчиков имеет модель с «щелевой» (по принципу расчески) маской (индикаторной пластиной), но существует ряд других исполнений, которые обеспечивают еще большую стабильность и эффективность работы.

Подключение преобразователя частоты к энкодеру

Энкодеры устройство и принцип работы

В станках, кранах, лифтовых приводах, промышленных роботизированных системах требуется очень точное позиционирование вала и регулирование частоты его вращения. Использование частотных преобразователей с векторным управлением с обратной связью по скорости позволяет решить эту задачу.

Для претенциозного регулирования скорости и позиционирования вала двигателя в состав электропривода включаются энкодеры. Использование частотно-регулируемого привода с датчиками скорости и положения позволяет заменить дорогостоящие сервоприводы.

Состав электропривода на базе частотного преобразователя с точным позиционированием

Привод механизмов с точным позиционированием содержит:

  • Электродвигатель синхронного или асинхронного типа.
  • Датчик углового перемещения или скорости (энкодер).
  • Сопрягающую плату.
  • Частотный преобразователь.
  • Контроллер движения.

Современные частотные преобразователи для оборудования с претенциозным регулированием положения рабочих органов или частоты вращения имеют функцию IMC, которая позволяет обойтись без сопрягающей платы и контроллера.

Как построить систему позиционирования

При построении системы позиционирования необходимо решить следующие задачи:

  • Определить характер перемещения оси (абсолютный или относительный). При относительном перемещении за нулевую точку принимается положение вала при включении оборудования.

При абсолютном перемещении при загрузке системы должны определяться абсолютные координаты вала относительно заданных осей координат.

  • Подобрать энкодер. Эти элементы выбирают по количеству импульсов или бит за один оборот, типу и количеству выходов, габаритов корпуса, степени защиты IP, диаметру и типу вала.
  • Подобрать частотный преобразователь и контроллер. Эти устройства должны иметь функции реверсивного счетчика (для работы с импульсным энкодером), определения координат оси при включении оборудования, аналоговые и цифровые выходы. Для управления шаговым двигателем могут понадобиться частотные входы “шаг/направление” и “по часовой стрелке/против часовой стрелки”.

Установка, подключение и тестирование энкодеров

Энкодер выбирают, исходя из требований к системе и параметров контроллера и частотного преобразователя. Самым важным критерием выбора этого оборудования является разрешение или количество импульсов, генерируемых за один оборот.

Чем больше импульсов передает устройство на котроллер или частотный преобразователь, тем выше точность позиционирования положения вала при низкой скорости.

Для точного регулирования при низкой частоте вращения необходимо не менее 20 импульсов на один период квантования контроллера.

При высокой скорости вращения ротора, следует выбрать устройство с разрешением, не превышающем максимальную входную частоту реверсивного счетчика частотного преобразователя или контроллера.

Энкодер крепится к валу двигателя, редуктора или другого передаточного устройства. При его установке важно обеспечить жесткое соединение. Скольжение и люфт снижают точность позиционирования и регулирования.

Запрещается запитывать знкодер от общей шины питания цепи управления. Для этих устройств необходимо предусмотреть отдельный источник стабилизированного напряжения. Интерфейсы Danfoss для подключения энкодеров имеют встроенные источники питания.

Соединение датчика скорости и положения необходимо выполнить экранированными кабелями рекомендуемой производителем марки.

При наладке привода ПК, где установлено соответствующее ПО, соединяют с интегрируемым или внешним контроллером. Далее открывают соответствующий раздел в меню котроллера и частотного преобразователя. Затем определяют тип энкодера, вводят его параметры.

Специализированные частотные преобразователи с интегрируемым контроллером движения имеют функции тестирования датчиков. Предусмотрены разные программы испытаний для ведущего и ведомого энкодеров в системе следящего привода. Программа испытаний:

  • Автоматически определяет тип и разрешение датчика.
  • Выполняет расчет времени замера ПИД-регулятора.
  • Проверяет тип перемещения и выбор времени подсчета количества импульсов.
  • Рассчитывает коэффициент прямой связи.

Если энкодер не работает, следует проверить качество контактных соединений. Если подсчет импульсов инкрементального датчика осуществляется в обратную сторону, необходимо поменять кабели, подключенные к каналам A и B и A/ и B/.

Преимущества специализированных преобразователей частоты

При использовании специализированных частотников и интегрируемых и внешних котроллеров, отпадет необходимость производить измерения и расчеты вручную. Эти устройства комплектуют программным обеспечением, позволяющим нивелировать дребезг контактов энкодеров, а также избавляет от необходимости писать программы самостоятельно.

Частотно-регулируемый привод способен выполнять следующие базовые функции:

  • Определения абсолютной координаты для импульсного энкодера (Home).
  • Настройки передаточных отношений и смещений в режиме On-line.
  • Синхронизации скорости, положения по метке ведущего и ведомого привода в следящей системе регулирования.
  • Приема и передачи данных по поддерживаемым протоколам связи.
  • Абсолютного и относительного позиционирования.
  • Автоматического вычисления, сравнения данных от датчиков.
  • Совместимости с различными типами энкодров, поддержка разных конфигураций системы управления.
  • Отладки встроенных программ.

Программирование преобразователей частоты и контроллеров движения осуществляется при помощи ПО, разработанного производителем. Схемы подключения различных типов энкодеров представлены в паспорте электропривода.

Для построения систем точного позиционирования на базе частотных преобразователей и контроллеров Danfoss не требуется глубоких знаний сервотехнологии и навыков написания программ. Эти устройства разработаны по принципу “ все в одном”. Такие приводы широко используются для станков с ЧПУ, кранов, высокоточных дозаторов и другого промышленного оборудования.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.