Дроссель электрический принцип работы

Дроссель что это такое, принцип работы. Применение в электрике, разновидность

Дроссель электрический принцип работы

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой.

Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше.

Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.

Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным.

Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.
Дроссель для люминесцентной лампы.

Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами.

Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт.

Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах.

Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600.

Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом.

Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150.

Примерные параметры дросселей приведены в таблице ниже.

Таблица расчетов основных свойств дросселя.

Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине.

Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки.

Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Стоит почитать: все об электолитических конденсаторах.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

Будет интересно➡  Обозначение дросселей на схеме

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью.

Чтобы потом не получилось, как в русской пословице: скупой платит дважды.

Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты.

Поэтому чем выше частота и ток, тем больше потери мощности.

На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя.

Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата.

Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника.

Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем.

Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Будет интересно➡  Что такое тепловое реле

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них.

Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода.

Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Дроссели разной мощности.

Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором.

Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему.

Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Материал в тему: все о переменном конденсаторе.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки.

Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства.

Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор).

Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

Будет интересно➡  Диодный мост – что это такое?

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт.

Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ.

Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Дроссель и его параметры

Дроссель электрический принцип работы

Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:

сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;

дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.

Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.

Принцип работы идеального дросселя

Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками.

В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить.

Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:

— обмотка дросселя не имеет активного сопротивления;

— отсутствует межвитковая ёмкость проводников дросселя;

— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.

С учётом таких допущений, представим сердечник, на который намотана катушка.

Идеальный дроссель.

Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ.

Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е.

Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток

В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению

где ω – количество витков катушки,

S – площадь поперечного сечения сердечника,

B – магнитная индукция,

I – величина электрического тока.

Тогда выражение для ЭДС самоиндукции будет иметь вид

Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).

Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.

Принцип работы реального дросселя

В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель

Магнитные силовые линии реальной катушки.

Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода.

Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее.

Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя

В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния

Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом.

Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами.

Эквивалентная схема дросселя

Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры.

Эквивалентная схема дросселя с учётом паразитных параметров.

Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса.

Уравнение соответствующее эквивалентной схеме будет иметь вид

Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника

где РС – мощность потерь в сердечнике.

Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках.

Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров.

Как рассчитать межвитковую ёмкость обмотки дросселя?

В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.

Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров.

Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой.

Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.

Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2

Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы

где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr,

εr – относительная диэлектрическая проницаемость,

ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Ф/м,

r – радиус поперечного сечения провода,

а – расстояние между магнитопроводом и осью провода,

n – число витков в слое,

р1 – периметр витка внутреннего слоя обмотки.

Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.

Емкость между слоя обмотки так же вычисляется по эмпирической формуле

где рср – периметр среднего витка обмотки,

b – расстояние между осями витков в соседних слоях,

m – число слоёв.

В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.

Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.

Как рассчитать индуктивность рассеяния дросселя?

Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель.

Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах.

Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя.

Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению

где μ0 – относительная магнитная проницаемость, μ0 = 4π*10-8,

рср – периметр среднего витка обмотки,

w – количество витков провода в дросселе,

l – длина намотки,

h – толщина намотки.

В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно.

Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами.

На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Что такое дроссель

Дроссель электрический принцип работы

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель.  Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.

Устройство индуктивной катушки

Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

Низкочастотные устройства

Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

Высокочастотные элементы

Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

Схема магнитного пускателя

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Основные характеристики

К основным характеристикам относятся следующие показатели:

  • величина индукции;
  • потеря сопротивления;
  • потери сердечника;
  • потери из-за вихревых токов;
  • паразитная ёмкость;
  • ТКИ (температурный коэффициент индуктивности).

Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.

Разновидности дросселей

Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

Электронные аналоги

На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

Следует заметить. Для высокочастотных приборов транзисторы не используют.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Таблица цветовой маркировки

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Дроссель электрический: сферы применения, устройство и электронные аналоги

Дроссель электрический принцип работы

Дросселем называется катушка индуктивности определенной конструкции и номинала, предназначенная для установки в электротехнических и электронных схемах.

Дроссель электрический требуется отличать от аналога, используемого в электронных устройствах с учетом их конструктивных особенностей.

Для понимания, в чем состоят различия этих двух изделий, придется ознакомиться с принципом работы и существующими разновидностями.

Технические характеристики

Технические характеристики компенсационных дросселей

Основным техническим параметром дросселя в электротехнике и электронике, полностью характеризующим его функциональность, является величина индуктивности. Этим он напоминает обычную катушку, применяемую в различных электрических схемах. И в том и другом случае за единицу измерения принимается Генри, обозначаемый как Гн.

Еще один параметр, описывающий поведение дросселя в различных цепях – его электрическое сопротивление, измеряемое в Омах. При желании его всегда удается проверить посредством обычного тестера (мультиметра). Для полноты описания работы этого элемента потребуется добавить такие показатели:

  • допустимое (предельное) напряжение;
  • номинальный ток подмагничивания;
  • добротность образуемого катушкой контура.

Дроссель цепи постоянного тока СТА-ФТП-93 93 кВт

Указанные характеристики дросселей позволяют разнообразить их ассортимент и использовать для решения самых различных инженерных задач.

Применение индуктивных элементов и их графическое обозначение

Назначение дросселя в импульсных схемах питания – блокировать резкие всплески от трансформатора

Электрические дроссели, работающие в цепях переменного тока, традиционно применяются в следующих случаях:

  • для развязки вторичных цепей импульсных источников питания;
  • в обратноходовых преобразователях или бустерах;
  • в балластных схемах люминесцентных ламп, обеспечивающих быстрый запуск;
  • для запуска электрических двигателей.

В последнем случае они используются в качестве ограничителей пусковых и тормозных токов.

Электротехнические изделия, устанавливаемые в электрических приводах мощностью до 30 кВт, по своему виду напоминают классический трехфазный трансформатор.

Так называемые дроссели насыщения используются в типовых обратноходовых стабилизаторах напряжения, а также в феррорезонансных преобразователях и магнитных усилителях.

В последнем случае возможность намагничивания сердечника позволяет изменять индуктивное сопротивление действующих цепей в широких пределах.

Сглаживающие дроссели применяются для снижения уровня пульсаций в выпрямительных цепях.

Источники питания с такими элементами до сих пор встречаются в электротехнической практике. Для запуска люминесцентных ламп все чаще используется «электронный» балласт, постепенно вытесняющий намоточные изделия. Его применение объясняется следующими преимуществами:

  • низкий вес;
  • эксплуатационная надежность;
  • отсутствие характерного для обычных дросселей гудения.

Для обозначения дросселя на электротехнических и электронных схемах используются значки, представляющие собой отрезок витого проводника. Для катушек с сердечником внутри намотки дополнительно ставится черточка, а в бескаркасном варианте исполнения она отсутствует.

Что такое дроссель и для чего он нужен, объясняю просто и доступно

Дроссель электрический принцип работы

Здравствуйте уважаемые посетители моего канала! В этой статье я хочу поговорить с вами о таком важном и многими до конца не понятым элементом как дроссель. И постараюсь буквально на пальцах объяснить, как же этот загадочный радиоэлемент функционирует.

yandex.ru

Что такое дроссель

Итак, по факту дроссель – это не что иное, как самая обычная медная катушка в большинстве случаев намотанная на ферритовый либо же металлический сердечник. Но так же дроссель может быть и вообще без сердечника.

yandex.ru

Как он работает

Итак, мы имеем дроссель (катушку из меди намотанную на сердечник). Если мы начнем пропускать через него ток, то он начинает формировать электромагнитное поле вокруг катушки. При этом для формирования поля нужна энергия и получается, что в первый момент протекания тока он тратится на формирование этого магнитного поля.

То есть, грубо говоря, в первый момент времени протекания тока дроссель приостанавливает протекание тока по нему. Как только электромагнитное поле полностью сформировано дроссель уже не препятствует протеканию тока и он продолжает движение дальше.

yandex.ru

Если увеличить напряжение на дросселе, то сила тока так же увеличивается, а дроссель увеличивает свое магнитное поле. Уже на выходе из дросселя рост напряжения будет происходить с запаздыванием, так как часть энергии была потрачена на формирование электромагнитного поля.

А теперь давайте представим, что рост напряжения имел импульсный характер. Дроссель его (импульс) полностью поглотит и на выходе будет стабильное напряжение без всяких скачков.

Данный эффект активно используется, например, в сетевых фильтрах, которые благодаря установленным дросселям успешно отфильтровывают импульсные помехи напряжения.

yandex.ru

Каждый существующий дроссель характеризуется такой величиной как индуктивность (физическая величина, характеризующая магнитные свойства электрической цепи).

При этом верно утверждение: чем больше индуктивность проводника, тем большим будет сформированное магнитное поле при идентичном значении протекающего электрического тока.

Индуктивность измеряется в “H” – Генри и чем большей индуктивностью обладает дроссель, тем больше энергии нужно потратить чтобы полностью сформировать электромагнитное поле вокруг него.

Чем больше витков в катушке, тем большей индуктивностью она будет обладать, а при помещении в катушку сердечника индуктивность увеличивается многократно.

yandex.ru

Кстати, если индуктивность дросселя будет достаточна большой, а частота тока высокой, то он (дроссель) просто напросто полностью заблокирует протекание переменного электрического тока, так как просто не будет успевать насыщаться до переполюсовки питания.

Дроссель в понижающих DC-DC преобразователях

Эффект накопления электромагнитного поля в дросселе активно используется в понижающих DC-DC преобразователях, в которых используется еще одно крайне любопытное свойство дросселя, а именно:

yandex.ru

Итак, наш дроссель накопил электромагнитное поле, вот только хранить его он ну никак не умеет и отдает его именно в виде электричества (а не тепла).

Это происходит следующим образом: дроссель буквально бомбардируется короткими импульсами, которые сформированы транзистором из линии питания.

yandex.ruДавайте проследим путь одного импульса: Происходит импульс величиной в 12 Вольт, но настолько короткий, что дроссель не успевает насытиться полностью (поле не до конца сформировано).

После подачи импульса электрическая цепь трансформируется и уже дроссель выполняет роль источника питания.

yandex.ru

Но так как насыщение произошло не полностью, он отдает напряжение уже не 12 Вольт, а более низкое, например, 5 Вольт.

При этом, регулируя продолжительность импульса, мы тем самым контролируем (увеличиваем или же уменьшаем) напряжение, которое приходит на нагрузку.

При этом таких импульсов может быть до нескольких тысяч и даже более в одну секунду. А для того, чтобы сгладить пульсацию, в схему добавляется конденсатор.

yandex.ru

Дроссель в повышающих DC-DC

А теперь давайте поговорим о самом интересном свойстве дросселя. Как вы, наверное, уже поняли дроссель никак не может сохранить накопленную энергию и отдает ее сразу. А как вы думаете, что произойдет, если полностью насыщенный дроссель мгновенно отключить от цепи?

yandex.ru

А произойдет то, что дроссель будет настолько стремиться отдать свой заряд, что на его выводах будет существенно расти напряжение до таких величин, пока не произойдет пробой воздушной прослойки между выводами дросселя.

Именно это уникальное свойство используется в повышающих преобразователях.

Работает это следующим образом: пока цепь с дросселем замкнута, ток преспокойно протекает по замкнутой цепи.

yandex.ru

Но если в цепи установить размыкатель (обычно это транзистор), то в момент размыкания цепи в дросселе импульсно возрастет напряжение и если постоянно выполнять размыкание и замыкание, то можно будет снимать импульсное высокое напряжение.

Не забываем, что из цепи никуда не делся источник питания и получается, что в таком случае напряжение источника питания и дросселя суммируется.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.