Что такое электрический потенциал простыми словами

Электрический потенциал

Что такое электрический потенциал простыми словами

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности.

До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году.

Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы.

Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие.

Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы.

К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны… стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее.

Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр.

Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека.

К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов.

В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле.

К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов.

Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества.

Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами.

Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль.

В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты.

При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным.

Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль.

Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное.

Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения.

Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками.

Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления.

Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности.

Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности.

Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление.

Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!).

Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.

Система TN-C-S

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Что такое электрический потенциал простыми словами – Все об электричестве

Что такое электрический потенциал простыми словами

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Источник: http://popayaem.ru/elektricheskij-tok-napryazhenie.html

Электрический потенциал

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Электрический ток, напряжение — поймет даже ребенок!

Что такое электрический потенциал простыми словами

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Электрическое напряжение и потенциал

Что такое электрический потенциал простыми словами

А В

В поле заряда Qпоместим пробный заряд q.Под действием электрического поля Q,qначнет двигаться от точки А добесконечности, значит электрическоеполе совершает работу, то есть обладаетэнергией. Энергетическими характеристикамиполя является потенциал и напряжение.

Электрическиепотенциал – это работа совершаемаясилами поля по перемещению единичногозаряда из одной точки поля в бесконечность.

φ-потенциал измеряется в вольтах (В)

Запишем потенциалточек А и В ;.

Электрическоенапряжение-это работа, совершаемая силами поля поперемещению единичного заряда из однойточки поля в другую.

[U]=В ;

напряжение междудвумя точками есть разность потенциаловэтих точек

Потенциал Землиравен 0.

Электрический ток

Электрическийток – этонаправленное движение зарядов поддействием электрического поля.

Чтобы ток шел нужноиметь замкнутую цепь, состоящую изисточника и приемника электрическойэнергии и соединительных проводов. Занаправление тока принимаем направлениедвижение положительного заряда. Поэтомуво внешней цепи ток направлен от зажима«+» к зажиму «-», а внутри источниканаоборот.

[I]=A

1 мА=10-3А

1мкА=10-6А

Сила тока –количествоэлектричества, проходящего черезпоперечное сечение проводника за 1с.

;;Ток равен скорости изменения зарядасимволпроизводной.

При прохождениитока проводник нагревается и совершаетсяработа.

; [А]= Дж

[Р]= Вт – мощность- это работа в единицу времени.

1 мВт =10-3Вт

1 мкВт =10-6Вт

1 кВт =103Вт

Тестовые задания:

ЗаданиеВарианты ответов
1.Является ли электрический потенциал энергетической характеристикой электрического поля?Да;Нет.

Понятие об источниках

Источник- этоустройство,которое выдает в цепь электрическуюэнергию.

Различают источникинапряжения и источники тока.

Источник напряжения– это источник, ЭДС которого не зависитот сопротивления нагрузки.

Е-ЭДС;

Ri-внутреннеесопротивление источника.

Схемное изображение

источника напряжения

Источник тока-это источник,ток которого не зависит от сопротивлениянагрузки.

-ток источника тока

Схемное изображение

источника тока

Источниками токаявляются электронные лампы, транзисторы.Чтобы получить источник тока на практикенадо к источнику напряжения подключитьочень большое внутреннее сопротивление.

При расчетахвозникает необходимость преобразоватьисточник тока в источник напряжений инаоборот.

Рис. Схема систочником напряжения

Чтобы получитьсхему с эквивалентным источником токанадо ток источника тока рассчитать поформуле: и внутреннее сопротивление источниканапряжения, включенного последовательно,включить к источнику тока параллельно.

Рис. Эквивалентнаясхема с источником тока.

Параметры электрических сигналов

Сигналы бываютпериодическими и непериодическими.Периодические повторяются черезопределенные промежутки времени.Непериодические возникают один раз ибольше не повторяются.

1 Мгновеннымназывается значение сигнала в любоймомент времени u,i,e;

2 Максимальныминазывается наибольшее из мгновенныхзначений Um,Im,Em;

3 Размах-это разность между максимальным иминимальным значением сигнала Up,Ip,Ep,

4 Период– это наименьший промежуток времени.через который, значение переменнойповторяется [T]=с;

5 Циклическаячастота -это количество колебаний переменнойза 1 с.

[f]=Гц

1кГц=103Гц

1МГц=106Гц

Сигналы различнойформы

1 Сигнал неизменяющийся во времени – это постоянноенапряжение или ток.

2 Сигнал гармоническойформы изменяется по закону sinили cos

3 Сигнал треугольнойформы.

4 Сигнал пилообразнойформы.

5 Сигнал прямоугольнойформы (биполярный импульс)

6 Однополярныйимпульс

tu-длительность импульса

скважность-отношение периода к длительностиимпульса

7 Сигнал на выходеоднополупериодного выпрямителя

8 Сигнал на выходедвухполупериодного выпрямителя

Тестовые задания:

ЗаданиеВарианты ответов
1Является ли скважность понятием, которое характеризует гармонический сигнал?Да;Нет.
2 Укажите какой отрезок на временной диаграмме соответствует размаху сигнала?
ЗаданиеВиды сигналовВременные диаграммы
4.Укажите какие временные диаграммы соответствуют перечисленным видам сигналов.
  1. однополярный импульс;
  2. гармонический сигнал;
  3. сигнал пилообразной формы;
  4. сигнал треугольной формы.

ЭЛЕМЕНТЫЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Резистивноесопротивление – этоучасток цепи, в которой происходитпроцесс необратимого преобразованияэлектрической энергии в тепловую.

[R]=Ом

1кОм=103Ом

1МОм=106Ом

Элемент, которыйобладает электрическим сопротивлением,называетсярезистор

,

где ρ-удельное сопротивление

l-длина проводника.

S-площадь поперечного сечения

Электрическаяпроводимость- этоспособность тела проводить электрическийток.

[G]=См (Сименс)

Индуктивность-это способностьтела накапливать энергию магнитногополя.

[L]=Гн(Генри)

1мГн= 10-3Гн

1мкГн= 10-6Гн

Формула индуктивности, где;-потокосцепление катушки

Ф-магнитный поток, N-число витков катушки

Элемент которыйобладает индуктивностью, называетсякатушка индуктивности.

Для тороидальнойкатушки запишем расчетную формулу ееиндуктивности

lср-длина средней магнитной силовой линии

-магнитная постоянная, μ-относительная магнитная проницаемость.

Запишем формулуэнергии магнитного поля .

Емкость- этоспособность тела накапливать энергиюэлектрического поля

[C] (фарад)

С-электрическая емкость.

1мкФ=10-6Ф

1нФ=10-9Ф

1пФ=10-12Ф

Элемент обладающийемкостью называютконденсатором. Конденсатор – этодве металлические пластины, разделенныеслоем диэлектрика.

Формула емкостиплоского конденсатора

ε0-электрическая постоянная, ε0=8,85·10-12Ф/м

ε-относительная диэлектрическаяпроницаемость

d-расстояние между пластинами

S-площадь одной пластины

Запишем формулуэнергии электрического поля

Тестовые задания:

ЗаданиеВарианты ответов
2.Укажите какие из приведенных математических выражений соответствуют понятию индуктивность.а) ; б); в); г); д);
3.Выберите из перечисленных величин величины, соответстствующие 25мкФ.а) 25·10-6 Ф; б) 25·106 Ф;в) 25·103 нФ; г) 25·106 пФ;д) 25·10-9 нФ; е) 25·10-12 пФ.

Что такое потенциал в электричестве

Что такое электрический потенциал простыми словами

В физике часто используется понятие потенциалов. Каждый, кто работает с электроникой или домашними электрическими сетями, должен представлять себе, потенциал что такое, как проводится его измерение, и какое влияние он оказывает на окружающие тела.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы.

Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле.

В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал.

В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала.

Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет.

Разность потенциалов (напряжение)

Напряжение является одним из важнейших терминов в электрике, оно описывается как работа, совершаемая электрополем с целью перемещения некоторого заряда из одной точки в другую.

По аналогии с гравитацией, заряд при помещении в зону действия поля обладает потенциалом, который можно сравнить с соответствующим видом энергии у тела.

Величина электрического потенциала прямо пропорциональна степени полевой напряженности и величине самого заряда.

Что такое фаза в электричестве Встает вопрос: потенциал в чем измеряется? Правильнее будет сказать, в чем обычно измеряется разность потенциалов, так как работники электротехники имеют дело именно с этой величиной в форме напряжения.

Для самого потенциала специальной измерительной единицы не существует. В СИ принято измерять разность в вольтах (В).

Она равна одному вольту в том случае, если для транспортировки заряда в один кулон из одной точки электрополя в другую потребуется совершить работу в один джоуль.

Важно! Измерить напряжение можно с помощью специального устройства – вольтметра.

Стрелочная разновидность прибора, использующаяся на школьных уроках физики, оснащена градуированной шкалой, базирующейся на угле отклонения проволочной рамки, по которой проходит электроток.

Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь. Для измерения важно правильно подключить щупы.

Измерить напряжение поможет вольтметр

Примеры формул для вычисления напряжения

Электрическое поле — что это такое, понятие в физике

Измерить напряжение можно, воспользовавшись такой формулой:

U=A/q (U, A и q – величина напряжения, переносящая работа электрополя и заряд, соответственно).

Выразив работу (A=q*U), можно понять, что, чем больше напряженность, тем большую работу потребуется совершить электрополю, чтобы перенести Q. Такие преобразования помогают усвоить, почему важно, чтобы источник питания был мощным. Чем больше потенциальная разница между его клеммами, тем больший объем работы он способен обеспечивать.

Чтобы определить напряжение на участке электрической цепи, используется следующее выражение:

U=I*R.

Здесь I – сила протекающего по проводнику электротока, R – сопротивление фрагмента цепи. Для последовательно и параллельно соединенных проводниковых элементов также существуют свои законы, согласно которым рассчитываются напряжение, токовая сила и сопротивление для каждой из веток.

Для чего нужен потенциометр электрику

Что такое измерение сопротивления изоляции и почему это важно

Данный прибор широко применяется в практике для модуляции напряжения.

Дело в том, что у многих источников (особенно заточенных под автономное функционирование: аккумуляторные элементы, солнечные батареи и т.д.) константное напряжение, не поддающееся управлению без специальных устройств, что может вызвать проблемы.

Чтобы уменьшить исходное напряжение такого элемента, используют устройства-делители, снабженные потенциометрами.

Как работает потенциометр? Он представляет собой резистор, имеющий пару выводов и подвижный ползунок с еще одним выводом. Подключаться такое переменное устройство сопротивления может двумя способами:

  1. По типу реостата, с использованием ползункового вывода и одного из пары других. Сопротивление замеряется движением ползунка по корпусу резистора. Регуляция цепного электротока в таком случае возможна при последовательном подключении такого реостата и источника напряжения.
  2. Потенциометрическим методом, задействующим каждый вывод из имеющейся у прибора тройки. Два главных вывода включаются параллельно источнику, снятие сниженного напряжения реализуется с ползункового механизма и одного вывода. В этом случае через резисторное устройство течет электроток, создающий спад напряжения между ползунком и боковыми выводами. В такой модели на источник питания ложится большая нагрузка, так как для точности регуляции и отсутствия сбоев необходимо, чтобы резисторное сопротивление в несколько раз уступало нагрузочному.

Потенциометрическое подключение прибора

Таким образом, понятие потенциала используется в разных областях физики: как в механике, так и в изучении электричества. В последнем случае оно выступает в качестве характеристики поля. Непосредственно рассматриваемая величина измерению не поддается, зато можно измерить разность, тогда один заряд берется за точку отсчета.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.